AN INEXACT RELAXED GENERALIZED NEWTON ITERATIVE METHOD FOR SOLVING GENERALIZED ABSOLUTE VALUE EQUATIONS

被引:0
作者
Yu, Dongmei [1 ]
Zhang, Yiming [2 ,3 ]
Yuan, Yifei [4 ]
机构
[1] Liaoning Tech Univ, Coll Sci Inst Optimizat & Decis Analyt, Sch Business Adm, Fuxin 123000, Peoples R China
[2] Liaoning Tech Univ, Sch Business Adm, Huludao 125105, Peoples R China
[3] Liaoning Tech Univ, Inst Optimizat & Decis Analyt, Fuxin 123000, Peoples R China
[4] Liaoning Tech Univ, Inst Optimizat & Decis Anal, Coll Sci, Fuxin 123000, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2024年 / 20卷 / 01期
基金
中国国家自然科学基金;
关键词
generalized absolute value equations; generalized Newton method; relaxed; inexact; convergence; LINEAR COMPLEMENTARITY; VERTICAL-BAR; ALGORITHM; MODEL;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, for solving the generalized absolute value equations (GAVE), an inexact relaxed generalized Newton (IRGN) iterative method is developed, which can adopt a relative error tolerance. Linear convergence of the IRGN iterative method is established under suitable conditions, and theoretical analysis of the inexact schemes support the efficient computational implementations of the exact schemes. It has been found that the IRGN iterative method involves the classical generalized Newton (GN) iterative method as a special case. Some numerical results are given to demonstrate the viability and robustness of the proposed methods.
引用
收藏
页码:23 / 44
页数:22
相关论文
共 45 条
[41]   A modified fixed point iteration method for solving the system of absolute value equations [J].
Yu, Dongmei ;
Chen, Cairong ;
Han, Deren .
OPTIMIZATION, 2022, 71 (03) :449-461
[42]   A modified multivariate spectral gradient algorithm for solving absolute value equations [J].
Yu, Zhensheng ;
Li, Lin ;
Yuan, Yue .
APPLIED MATHEMATICS LETTERS, 2021, 121
[43]   A new concave minimization algorithm for the absolute value equation solution [J].
Zamani, Moslem ;
Hladik, Milan .
OPTIMIZATION LETTERS, 2021, 15 (06) :2241-2254
[44]   Global and Finite Convergence of a Generalized Newton Method for Absolute Value Equations [J].
Zhang, C. ;
Wei, Q. J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 143 (02) :391-403
[45]   Newton-based matrix splitting method for generalized absolute value equation [J].
Zhou, Hong-Yu ;
Wu, Shi-Liang ;
Li, Cui-Xia .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 394