On the A-spectrum for A-bounded operators on von-Neumann algebras

被引:0
|
作者
Baklouti, H. [1 ]
Difaoui, K. [1 ]
Mabrouk, M. [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Sfax, Tunisia
关键词
C*-algebra; Von Neumann algebra; Positive operator; Spectrum; RANGE; ELEMENTS;
D O I
10.1007/s43036-024-00362-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a von Neumann algebra. For a nonzero positive element A is an element of M, let P denote the orthogonal projection on the norm closure of the range of A and let sigma(A)(T) denote the A-spectrum of any T is an element of M-A. In this paper, we show that sigma(A)(T) is a non empty compact subset of C and that sigma(PTP, PMP) subset of sigma(A)(T) for any T is an element of M-A where sigma(PT P, PMP) is the spectrum of PT P in PMP. Sufficient conditions for the equality sigma(A)(T) = sigma(PTP, PMP) to be true are also presented. Moreover, we show that sigma(A)(T) is finite for any T is an element of M-A if and only if A is in the socle of M. Furthermore, we consider the relationship between elements S and T is an element of M-A that satisfy the condition sigma(A)(SX) = sigma(A)(T X) for all X is an element of M-A. Finally, a Gleason-Kahane-Zelazko's theorem for the A-spectrum is derived.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A NOTE ON THE A-SPECTRUM OF A-BOUNDED OPERATORS
    Baklouti, Hamadi
    Mabrouk, Mohamed
    OPERATORS AND MATRICES, 2023, 17 (03): : 599 - 611
  • [2] The range of operators on von Neumann algebras
    Bermúdez, T
    Kalton, NJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (05) : 1447 - 1455
  • [3] Unitary operators in real von Neumann algebras
    Navarro-Pascual, J. C.
    Navarro, M. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) : 933 - 938
  • [4] Projections on von Neumann algebras as limits of elementary operators
    Pluta, Robert
    Russo, Bernard
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 : 188 - 200
  • [5] On von Neumann algebras consisting of complex symmetric operators
    Xiang, Zhang
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [6] A Note on Uniformly Bounded Cocycles into Finite Von Neumann Algebras
    Boutonnet, Remi
    Roydor, Jean
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (02): : 236 - 239
  • [7] A New Seminorm for d-Tuples of A-Bounded Operators and Their Applications
    Altwaijry, Najla
    Feki, Kais
    Minculete, Nicusor
    MATHEMATICS, 2023, 11 (03)
  • [8] Characterisations of von Neumann algebras
    Hung Le Pham
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 454 (02) : 542 - 556
  • [9] A characterization of von Neumann algebras
    János Kristóf
    Acta Scientiarum Mathematicarum, 2010, 76 (3-4): : 561 - 580
  • [10] Preduals of von Neumann Algebras
    A. I. Shtern
    Functional Analysis and Its Applications, 2003, 37 : 157 - 159