We consider the stabilization of a class of linear evolution systems z '=Az+Bv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z'=Az+Bv$$\end{document} under the observation y=Cz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y=Cz$$\end{document} by means of a finite dimensional control v. The control is based on the design of a Luenberger observer which can be infinite or finite dimensional (of dimension large enough). In the infinite dimensional case, the operator A is supposed to generate an analytical semigroup with compact resolvent and the operators B and C are unbounded operators whereas in the finite dimensional case, A is assumed to be a self-adjoint operator with compact resolvent, B and C are supposed to be bounded operators. In both cases, we show that if (A, B) and (A, C) verify the Fattorini-Hautus Criterion, then we can construct an observer-based control v of finite dimension (greater or equal than largest geometric multiplicity of the unstable eigenvalues of A) such that the evolution problem is exponentially stable. As an application, we study the stabilization of the diffusion system.
机构:
Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Leurs Applicat, F-64013 Pau, FranceUniv Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Leurs Applicat, F-64013 Pau, France
Badra, Mehdi
Takahashi, Takeo
论文数: 0引用数: 0
h-index: 0
机构:
Nancy Univ, CNRS, UMR 7502, Inst Elie Cartan,INRIA, F-54506 Vandoeuvre Les Nancy, France
INRIA Nancy Grand Est, Team Project CORIDA, F-54600 Villers Les Nancy, FranceUniv Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Leurs Applicat, F-64013 Pau, France
机构:
Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Leurs Applicat, F-64013 Pau, FranceUniv Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Leurs Applicat, F-64013 Pau, France
Badra, Mehdi
Takahashi, Takeo
论文数: 0引用数: 0
h-index: 0
机构:
Nancy Univ, CNRS, UMR 7502, Inst Elie Cartan,INRIA, F-54506 Vandoeuvre Les Nancy, France
INRIA Nancy Grand Est, Team Project CORIDA, F-54600 Villers Les Nancy, FranceUniv Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Leurs Applicat, F-64013 Pau, France