Fast Training of Neural Affine Models for Model Predictive Control: An Explicit Solution

被引:0
作者
Lawrynczuk, Maciej [1 ]
机构
[1] Warsaw Univ Technol, Fac Elect & Informat Technol, Inst Control & Computat Engn, Ul Nowowiejska 15-19, PL-00665 Warsaw, Poland
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Computational Intelligence in Control; Neural Networks; Affine Models; Model; Identification; Model Predictive Control; NONLINEAR-SYSTEMS; MPC;
D O I
10.1016/j.ifacol.2023.10.1857
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work describes a nonlinear affine model developed especially for prediction in Model Predictive Control (MPC). A multi-model structure is used in which independent sub-models compute predictions for the consecutive sampling instants. All sub-models are affine with respect to the future values of the manipulated variable that are calculated in MPC. Model coefficients are time-varying; they are determined online by a neural network of the Radial Basis Function type. It is proved that the described model configuration makes it possible to formulate the training task as a least squares problem that has an explicit solution (the global optimum). A chemical reactor benchmark is considered to show advantages of the discussed modeling approach and the resulting MPC scheme. As a result of model affinity, MPC requires solving online simple quadratic optimization tasks.
引用
收藏
页码:1578 / 1583
页数:6
相关论文
共 17 条
  • [1] DR-Advisor: A data-driven demand, response recommender system
    Behl, Madhur
    Smarra, Francesco
    Mangharam, Rahul
    [J]. APPLIED ENERGY, 2016, 170 : 30 - 46
  • [2] Camacho E. F., 2004, MODEL PREDICTIVE CON, DOI 10.1007/978-0-85729-398-5
  • [3] Chen Y., 2019, P INT C LEARN REPR
  • [4] Deterministic Global Nonlinear Model Predictive Control with Neural Networks Embedded
    Doncevic, Danimir T.
    Schweidtmann, Artur M.
    Vaupel, Yannic
    Schaefer, Pascal
    Caspari, Adrian
    Mitsos, Alexander
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 5273 - 5278
  • [5] NONLINEAR MODEL-BASED CONTROL USING 2ND-ORDER VOLTERRA MODELS
    DOYLE, FJ
    OGUNNAIKE, BA
    PEARSON, RK
    [J]. AUTOMATICA, 1995, 31 (05) : 697 - 714
  • [6] Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control
    Korda, Milan
    Mezic, Igor
    [J]. AUTOMATICA, 2018, 93 : 149 - 160
  • [7] L fiae awrynczuk M., 2022, Studies in Systems, Decision and Control, V389
  • [8] L fiae awrynczuk M., 2022, Neurocomputing, V513, P279
  • [9] Lawrynczuk M, 2014, STUD SYST DECIS CONT, V3, P1, DOI 10.1007/978-3-319-04229-9
  • [10] Predictive control for non-linear systems using neural networks
    Liu, GP
    Kadirkamanathan, V
    Billings, SA
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1998, 71 (06) : 1119 - 1132