Universal covers of non-negatively curved manifolds and formality

被引:0
作者
Milivojevic, Aleksandar [1 ]
机构
[1] Univ Waterloo, Fac Math, Waterloo, ON, Canada
关键词
Formality; Rational homotopy theory; Non-negative curvature; DIMENSION;
D O I
10.1007/s10455-024-09962-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if the universal cover of a closed smooth manifold admitting a metric with non-negative Ricci curvature is formal, then the manifold itself is formal. We reprove a result of Fiorenza-Kawai-Le-Schwachhofer, that closed orientable manifolds with a non-negative Ricci curvature metric and sufficiently large first Betti number are formal. Our method allows us to remove the orientability hypothesis; we further address some cases of non-closed manifolds.
引用
收藏
页数:6
相关论文
共 15 条
  • [1] Besse A.L., 2007, Einstein Manifolds
  • [2] STRUCTURE OF COMPLETE MANIFOLDS OF NONNEGATIVE CURVATURE
    CHEEGER, J
    GROMOLL, D
    [J]. ANNALS OF MATHEMATICS, 1972, 96 (03) : 413 - 443
  • [3] Cheeger J., 1971, J DIFFER GEOM, V6, P119
  • [4] The rational homotopy type of (n-1)-connected manifolds of dimension up to 5n-3
    Crowley, Diarmuid
    Nordstrom, Johannes
    [J]. JOURNAL OF TOPOLOGY, 2020, 13 (02) : 539 - 575
  • [5] REAL HOMOTOPY THEORY OF KAHLER MANIFOLDS
    DELIGNE, P
    GRIFFITHS, P
    MORGAN, J
    SULLIVAN, D
    [J]. INVENTIONES MATHEMATICAE, 1975, 29 (03) : 245 - 274
  • [6] Fernández M, 2023, Arxiv, DOI arXiv:2208.13046
  • [7] Fiorenza D, 2021, ANN SCUOLA NORM-SCI, V22, P79
  • [8] Flix Y., 2008, ALGEBRAIC MODELS GEO, DOI [10.1093/oso/9780199206513.001.0001, DOI 10.1093/OSO/9780199206513.001.0001]
  • [9] Geometric formality and non-negative scalar curvature
    Kotschick, D.
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2017, 13 (03) : 437 - 451
  • [10] Milivojevic A, 2023, Arxiv, DOI arXiv:2306.12364