Stability and Optimal Decay for the 3D Anisotropic MHD Equations

被引:0
作者
Yang, Wan-Rong [1 ]
Ma, Mei [1 ]
机构
[1] North Minzu Univ, Sch Math & Informat Sci, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial dissipation; Stability; Decay rates; Anisotropic equations; DISSIPATION; SYSTEM; EXISTENCE;
D O I
10.1007/s40840-024-01748-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper focuses on the stability and decay rates of solutions to the three dimensional anisotropic magnetohydrodynamic equations with horizontal velocity dissipation and magnetic damping phenomenon. By fully exploiting the structure of the system, the energy methods and the method of bootstrapping argument, we prove the global stability of solutions to this system with initial data small in H3(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{3}(\mathbb {R}<^>{3})$$\end{document}. Furthermore, we make use of the integral representation approach to obtain the optimal decay rates of these global solutions and their derivatives. This result along with its proof offers an effective approach to the large-time behavior on partially dissipated systems and reveals the stabilizing phenomenon exhibited by electrically conducting fluids.
引用
收藏
页数:29
相关论文
共 29 条
[1]   On the Global Solution of a 3-D MHD System with Initial Data near Equilibrium [J].
Abidi, Hammadi ;
Zhang, Ping .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (08) :1509-1561
[2]   Finite Fractal Dimensional Pullback Attractors for a Class of 2D Magneto-Viscoelastic Flows [J].
Ai, Chengfei ;
Shen, Jun .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
[3]   Existence of electromagnetic-hydrodynamic waves [J].
Alfven, H .
NATURE, 1942, 150 :405-406
[4]  
Chemin JY., 2006, MATH GEOPHYS INTRO R, DOI DOI 10.1093/OSO/9780198571339.001.0001
[5]   Global well-posedness for the 3-D MHD equations with partial diffusion in the periodic domain [J].
Chen, Wenji ;
Zhang, Zhifei ;
Zhou, Jianfeng .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (02) :309-318
[6]   Wave energy dissipation by anisotropic viscosity in magnetic X-points [J].
Craig, I. J. D. ;
Litvinenko, Yuri E. .
ASTROPHYSICAL JOURNAL, 2007, 667 (02) :1235-1242
[7]   Anisotropic viscous dissipation in three-dimensional magnetic merging solutions [J].
Craig, I. J. D. ;
Litvinenko, Y. E. .
ASTRONOMY & ASTROPHYSICS, 2009, 501 (02) :755-760
[8]   Unique weak solutions of the magnetohydrodynamic equations with fractional dissipation [J].
Dai, Yichen ;
Ji, Ruihong ;
Wu, Jiahong .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (07)
[9]  
Davidson PA., 2001, An Introduction to Magnetohydrodynamics, DOI [10.1017/9781316672853, DOI 10.1017/9781316672853, 10.1017/CBO9780511626333, DOI 10.1017/CBO9780511626333]
[10]  
Gala S, 2024, Journal of Mathematical Sciences, V278, P306, DOI [10.1007/s10958-024-06921-8, DOI 10.1007/S10958-024-06921-8]