Ti3 C2 Tx MXene in-situ transformed Li2 TiO3 interface layer enabling 4.5 V-LiCoO2 /sulfide all-solid-state lithium batteries with superior rate capability and cyclability

被引:10
作者
Wang, Yaping [1 ]
Yuan, Pengcheng [1 ]
Xu, Zeyuan [1 ]
Liu, Xiong-Xiong [1 ]
Feng, Shengfa [1 ]
Cao, Mufan [1 ]
Cao, Chen [2 ]
Wang, Xiaoqiang [2 ]
Pan, Long [1 ]
Sun, Zheng-Ming [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Key Lab Adv Met Mat Jiangsu Prov, Nanjing 211189, Peoples R China
[2] CALB Technol Co Ltd, Changzhou 213200, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid sulfide electrolyte; Oxide cathode; MXene; In -situ transformation; Li 2 TiO 3 interfacial layer; CATHODE; ELECTROLYTES; LICOO2; PERFORMANCE; TRANSPORT; STABILITY; COATINGS;
D O I
10.1016/j.cclet.2023.108776
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state lithium batteries (ASSLBs) based on sulfide electrolytes promise next-generation energy storage with high energy density and safety. However, the sulfide electrolytes suffer from phase instability and sluggish interfacial charge transport when pairing with layered oxide cathodes at high voltages. Herein, a simple and efficient strategy is proposed using two-dimensional Ti3 C2 Tx MXene as starting material to in-situ construct a 15 nm Li2 TiO3 layer on a typical oxide cathode, LiCoO2 . The in-situ transformation of Ti3 C2 Tx into Li2 TiO3 layer occurs at a low temperature of 500 degrees C, avoiding the phase deterioration of LiCoO2 . The thin Li2 TiO3 layer is Li+ conducting and electrochemically stable, thereby preventing the interfacial decomposition of sulfide electrolytes induced by LiCoO2 at high voltages and facilitating Li+ transport at the interface. Moreover, Li2 TiO3 can stabilize the layer structure of LiCoO2 at high voltages. Consequently, the sulfide-based ASSLB using LiCoO2 @Li2 TiO3 cathode can operate stably at a high voltage of up to 4.5 V ( vs . Li+ /Li), delivering an outstanding initial specific discharge capacity of 138.8 mAh/g with a high capacity retention of 86.2% after 100 cycles at 0.2 C. The in-situ transformation strategy may also apply to other MXenes, offering a general approach for constructing other advanced lithiated coatings for oxide cathodes. (c) 2024 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页数:6
相关论文
共 48 条
[1]   Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries [J].
Banerjee, Abhik ;
Tang, Hanmei ;
Wang, Xuefeng ;
Cheng, Ju-Hsiang ;
Han Nguyen ;
Zhang, Minghao ;
Tang, Darren H. S. ;
Wynn, Thomas A. ;
Wu, Erik A. ;
Doux, Jean-Marie ;
Wu, Tianpin ;
Ma, Lu ;
Sterbinsky, George E. ;
D'Souza, Macwin Savio ;
Ong, Shyue Ping ;
Meng, Ying Shirley .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (46) :43138-43145
[2]   Stable Li2TiO3 Shell-Li1.17Mn0.50Ni0.16Co0.17O2 Core Architecture Based on an In-Site Synchronous Lithiation Method as a High Rate Performance and Long Cycling Life Lithium-Ion Battery Cathode [J].
Cao, Jingjing ;
Xie, Huan ;
Lv, Fei ;
Xu, Ning ;
Lee, Wee Siang Vincent ;
Ma, Yu ;
Liu, Ying ;
Cheng, Zhiyan ;
Chen, Li .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) :5462-5471
[3]   From metal to cathode material: in situ formation of LiCoO2 with enhanced cycling performance and suppressed phase transition [J].
Cao, Longhao ;
Wang, Hui ;
Guo, Ziyin ;
Zhang, Jing ;
Zhang, Xiaosong ;
Peng, Cancan ;
Yu, Jingxiong ;
Cheng, Ya-Jun ;
Xia, Yonggao .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (18) :9913-9921
[4]   Interface Aspects in All-Solid-State Li-Based Batteries Reviewed [J].
Chen, Chunguang ;
Jiang, Ming ;
Zhou, Tao ;
Raijmakers, Luc ;
Vezhlev, Egor ;
Wu, Baolin ;
Schuelli, Tobias U. ;
Danilov, Dmitri L. ;
Wei, Yujie ;
Eichel, Ruediger-A. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2021, 11 (13)
[5]   Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces [J].
Chen, Rusong ;
Li, Qinghao ;
Yu, Xiqian ;
Chen, Liquan ;
Li, Hong .
CHEMICAL REVIEWS, 2020, 120 (14) :6820-6877
[6]   Microvoltammetry for cathode materials at elevated temperatures: electrochemical stability of single particles [J].
Dokko, K ;
Horikoshi, S ;
Itoh, T ;
Nishizawa, M ;
Mohamedi, M ;
Uchida, I .
JOURNAL OF POWER SOURCES, 2000, 90 (01) :109-115
[7]   An odyssey of lithium metal anode in liquid lithium-sulfur batteries [J].
Fan, Xiao-Zhong ;
Liu, Meng ;
Zhang, Ruiqi ;
Zhang, Yuezhou ;
Wang, Songcan ;
Nan, Haoxiong ;
Han, Yunhu ;
Kong, Long .
CHINESE CHEMICAL LETTERS, 2022, 33 (10) :4421-4427
[8]   Physical characteristic study of LiCoO2 prepared by molten salt synthesis method in 550-800 °C [J].
Fu, Juan ;
Bai, Ying ;
Liu, Caiyun ;
Yu, Hongjing ;
Mo, Yujun .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 115 (01) :105-109
[9]   Space Charge Layer Effect in Sulfide Solid Electrolytes in All-Solid-State Batteries: In-situ Characterization and Resolution [J].
He, Wei ;
Zhou, Lei ;
Tufail, Muhammad Khurram ;
Zhai, Pengfei ;
Yu, Peiwen ;
Chen, Renjie ;
Yang, Wen .
TRANSACTIONS OF TIANJIN UNIVERSITY, 2021, 27 (06) :423-433
[10]   Enabling superior electrochemical performance of NCA cathode in Li5.5 PS4.5 Cl1.5-based solid-state batteries with a dual-electrolyte layer [J].
Jiang, Ziling ;
Chen, Shaoqing ;
Wei, Chaochao ;
Zhang, Ziqi ;
Wu, Zhongkai ;
Luo, Qiyue ;
Ming, Liang ;
Zhang, Long ;
Yu, Chuang .
CHINESE CHEMICAL LETTERS, 2024, 35 (04)