Jointprop: Joint Semi-supervised Learning for Entity and Relation Extraction with Heterogeneous Graph-based Propagation

被引:0
|
作者
Zheng Yandan [1 ,2 ]
Anran, Hao [1 ]
Tuan, Luu Anh [1 ]
机构
[1] Sch Comp Sci & Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Interdisciplinary Grad Program HealthTech, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised learning has been an important approach to address challenges in extracting entities and relations from limited data. However, current semi-supervised works handle the two tasks (i.e., Named Entity Recognition and Relation Extraction) separately and ignore the cross-correlation of entity and relation instances as well as the existence of similar instances across unlabeled data. To alleviate the issues, we propose Jointprop, a Heterogeneous Graph-based Propagation framework for joint semi-supervised entity and relation extraction, which captures the global structure information between individual tasks and exploits interactions within unlabeled data. Specifically, we construct a unified span-based heterogeneous graph from entity and relation candidates and propagate class labels based on confidence scores. We then employ a propagation learning scheme to leverage the affinities between labelled and unlabeled samples. Experiments on benchmark datasets show that our framework outperforms the state-of-the-art semi-supervised approaches on NER and RE tasks. We show that the joint semi-supervised learning of the two tasks benefits from their codependency and validates the importance of utilizing the shared information between unlabeled data.
引用
收藏
页码:14541 / 14555
页数:15
相关论文
共 50 条
  • [21] Learning Flexible Graph-Based Semi-Supervised Embedding
    Dornaika, Fadi
    El Traboulsi, Youssof
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 206 - 218
  • [22] Graph-Based Semi-Supervised Learning on Evolutionary Data
    Song, Yanglei
    Yang, Yifei
    Dou, Weibei
    Zhang, Changshui
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 467 - 476
  • [23] Graph-Based Semi-Supervised Learning as a Generative Model
    He, Jingrui
    Carbonell, Jaime
    Liu, Yan
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2492 - 2497
  • [24] Coded Distributed Graph-Based Semi-Supervised Learning
    Du, Ying
    Tan, Siqi
    Han, Kaifeng
    Jiang, Jiamo
    Wang, Zhiqin
    Chen, Li
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 367 - 372
  • [25] Pairwise Constraint Propagation for Graph-Based Semi-supervised Clustering
    Yoshida, Tetsuya
    FOUNDATIONS OF INTELLIGENT SYSTEMS, 2011, 6804 : 358 - 364
  • [26] Graph-based Label Propagation for Semi-Supervised Speaker Identification
    Chen, Long
    Ravichandran, Venkatesh
    Stolcke, Andreas
    INTERSPEECH 2021, 2021, : 4588 - 4592
  • [27] Pseudo Contrastive Learning for graph-based semi-supervised learning
    Lu, Weigang
    Guan, Ziyu
    Zhao, Wei
    Yang, Yaming
    Lv, Yuanhai
    Xing, Lining
    Yu, Baosheng
    Tao, Dacheng
    NEUROCOMPUTING, 2025, 624
  • [28] Research on the Entity Relation Extraction of Field based on Semi-Supervised
    Guo, Jianyi
    Zhao, Jun
    Yu, Zhengtao
    Su, Lei
    Xian, Yantuan
    Tian, Wei
    ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 1292 - 1300
  • [29] Semi-supervised Entity Relation Extraction Based on Trigger Word
    Tai, Liting
    Guo, Fenzhuo
    Qin, Sujuan
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 497 - 501
  • [30] Active Model Selection for Graph-Based Semi-Supervised Learning
    Zhao, Bin
    Wang, Fei
    Zhang, Changshui
    Song, Yangqiu
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1881 - 1884