Jointprop: Joint Semi-supervised Learning for Entity and Relation Extraction with Heterogeneous Graph-based Propagation

被引:0
|
作者
Zheng Yandan [1 ,2 ]
Anran, Hao [1 ]
Tuan, Luu Anh [1 ]
机构
[1] Sch Comp Sci & Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Interdisciplinary Grad Program HealthTech, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised learning has been an important approach to address challenges in extracting entities and relations from limited data. However, current semi-supervised works handle the two tasks (i.e., Named Entity Recognition and Relation Extraction) separately and ignore the cross-correlation of entity and relation instances as well as the existence of similar instances across unlabeled data. To alleviate the issues, we propose Jointprop, a Heterogeneous Graph-based Propagation framework for joint semi-supervised entity and relation extraction, which captures the global structure information between individual tasks and exploits interactions within unlabeled data. Specifically, we construct a unified span-based heterogeneous graph from entity and relation candidates and propagate class labels based on confidence scores. We then employ a propagation learning scheme to leverage the affinities between labelled and unlabeled samples. Experiments on benchmark datasets show that our framework outperforms the state-of-the-art semi-supervised approaches on NER and RE tasks. We show that the joint semi-supervised learning of the two tasks benefits from their codependency and validates the importance of utilizing the shared information between unlabeled data.
引用
收藏
页码:14541 / 14555
页数:15
相关论文
共 50 条
  • [1] Graph-based semi-supervised relation extraction
    Chen, Jin-Xiu
    Ji, Dong-Hong
    Ruan Jian Xue Bao/Journal of Software, 2008, 19 (11): : 2843 - 2852
  • [2] Graph-based semi-supervised learning
    Zhang, Changshui
    Wang, Fei
    ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (04) : 445 - 448
  • [3] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [4] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    Artificial Life and Robotics, 2009, 14 (4) : 445 - 448
  • [5] Joint sparse graph and flexible embedding for graph-based semi-supervised learning
    Dornaika, F.
    El Traboulsi, Y.
    NEURAL NETWORKS, 2019, 114 : 91 - 95
  • [6] Fairness in graph-based semi-supervised learning
    Tao Zhang
    Tianqing Zhu
    Mengde Han
    Fengwen Chen
    Jing Li
    Wanlei Zhou
    Philip S Yu
    Knowledge and Information Systems, 2023, 65 : 543 - 570
  • [7] On Consistency of Graph-based Semi-supervised Learning
    Du, Chengan
    Zhao, Yunpeng
    Wang, Feng
    2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 483 - 491
  • [8] Fairness in graph-based semi-supervised learning
    Zhang, Tao
    Zhu, Tianqing
    Han, Mengde
    Chen, Fengwen
    Li, Jing
    Zhou, Wanlei
    Yu, Philip S.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (02) : 543 - 570
  • [9] Fractional Graph-based Semi-Supervised Learning
    de Nigris, S.
    Bautista, E.
    Abry, P.
    Avrachenkov, K.
    Gonclaves, P.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 356 - 360
  • [10] Graph-based semi-supervised learning: A review
    Chong, Yanwen
    Ding, Yun
    Yan, Qing
    Pan, Shaoming
    NEUROCOMPUTING, 2020, 408 (408) : 216 - 230