Automatic assessment of DWI-ASPECTS for acute ischemic stroke based on deep learning

被引:0
|
作者
Fang, Ting [1 ]
Jiang, Zhuoyun [1 ]
Zhou, Yuxi [1 ]
Jia, Shouqiang [2 ]
Zhao, Jiaqi [3 ]
Nie, Shengdong [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Hlth Sci & Engn, Shanghai 200093, Peoples R China
[2] Shandong First Med Univ, Jinan Peoples Hosp, Dept Imaging, Jinan 271100, Shandong, Peoples R China
[3] Tongji Univ, Shanghai Peoples Hosp 4, Sch Med, Dept Ultrasound, Shanghai 200434, Peoples R China
基金
中国国家自然科学基金;
关键词
acute ischemic stroke; ASPECTS; deep learning; diffusion-weighted imaging; hybrid feature; COMPUTED-TOMOGRAPHY; ASPECTS SOFTWARE; CT; RELIABILITY; PERFORMANCE; SCORE;
D O I
10.1002/mp.17101
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundAlberta Stroke Program Early Computed Tomography Score (ASPECTS) is a standardized semi-quantitative method for early ischemic changes in acute ischemic stroke.PurposeHowever, ASPECTS is still affected by expert experience and inconsistent results between readers in clinical. This study aims to propose an automatic ASPECTS scoring model based on diffusion-weighted imaging (DWI) mode to help clinicians make accurate treatment plans.MethodsEighty-two patients with stroke were included in the study. First, we designed a new deep learning network for segmenting ASPECTS scoring brain regions. The network is improved based on U-net, which integrates multiple modules. Second, we proposed using hybrid classifiers to classify brain regions. For brain regions with larger areas, we used brain grayscale comparison algorithm to train machine learning classifiers, while using hybrid feature training for brain regions with smaller areas.ResultsThe average DICE coefficient of the segmented hindbrain area can reach 0.864. With the proposed hybrid classifier, our method performs significantly on both region-level ASPECTS and dichotomous ASPECTS. The sensitivity and accuracy on the test set are 95.51% and 93.43%, respectively. For dichotomous ASPECTS, the intraclass correlation coefficient (ICC) between our automated ASPECTS score and the expert reading was 0.87.ConclusionsThis study proposed an automated model for ASPECTS scoring of patients with acute ischemic stroke based on DWI images. Experimental results show that the method of segmentation first and then classification is feasible. Our method has the potential to assist physicians in the Alberta Stroke Program with early CT scoring and clinical stroke diagnosis.
引用
收藏
页码:4351 / 4364
页数:14
相关论文
共 50 条
  • [41] Deep learning-based classification of DSA image sequences of patients with acute ischemic stroke
    Benjamin J. Mittmann
    Michael Braun
    Frank Runck
    Bernd Schmitz
    Thuy N. Tran
    Amine Yamlahi
    Lena Maier-Hein
    Alfred M. Franz
    International Journal of Computer Assisted Radiology and Surgery, 2022, 17 : 1633 - 1641
  • [42] Deep learning-based classification of DSA image sequences of patients with acute ischemic stroke
    Mittmann, Benjamin J.
    Braun, Michael
    Runck, Frank
    Schmitz, Bernd
    Tran, Thuy N.
    Yamlahi, Amine
    Maier-Hein, Lena
    Franz, Alfred M.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2022, 17 (09) : 1633 - 1641
  • [43] Deep symmetric three-dimensional convolutional neural networks for identifying acute ischemic stroke via diffusion-weighted images
    Cui, Liyuan
    Han, Shanhua
    Qi, Shouliang
    Duan, Yang
    Kang, Yan
    Luo, Yu
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2021, 29 (04) : 551 - 566
  • [44] Usefulness of deep learning-assisted identification of hyperdense MCA sign in acute ischemic stroke: comparison with readers' performance
    Shinohara, Yuki
    Takahashi, Noriyuki
    Lee, Yongbum
    Ohmura, Tomomi
    Umetsu, Atsushi
    Kinoshita, Fumiko
    Kuya, Keita
    Kato, Ayumi
    Kinoshita, Toshibumi
    JAPANESE JOURNAL OF RADIOLOGY, 2020, 38 (09) : 870 - 877
  • [45] Rapid Assessment of Acute Ischemic Stroke by Computed Tomography Using Deep Convolutional Neural Networks
    Chung-Ming Lo
    Peng-Hsiang Hung
    Daw-Tung Lin
    Journal of Digital Imaging, 2021, 34 : 637 - 646
  • [46] Identifying acute ischemic stroke patients within the thrombolytic treatment window using deep learning
    Polson, Jennifer S.
    Zhang, Haoyue
    Nael, Kambiz
    Salamon, Noriko
    Yoo, Bryan Y.
    El-Saden, Suzie
    Starkman, Sidney
    Kim, Namkug
    Kang, Dong-Wha
    Speier, William F.
    Arnold, Corey W.
    JOURNAL OF NEUROIMAGING, 2022, 32 (06) : 1153 - 1160
  • [47] Automated Final Lesion Segmentation in Posterior Circulation Acute Ischemic Stroke Using Deep Learning
    Zoetmulder, Riaan
    Konduri, Praneeta R.
    Obdeijn, Iris, V
    Gavves, Efstratios
    Isgum, Ivana
    Majoie, Charles B. L. M.
    Dippel, Diederik W. J.
    Roos, Yvo B. W. E. M.
    Goyal, Mayank
    Mitchell, Peter J.
    Campbell, Bruce C., V
    Lopes, Demetrius K.
    Reimann, Gernot
    Jovin, Tudor G.
    Saver, Jeffrey L.
    Muir, Keith W.
    White, Phil
    Bracard, Serge
    Chen, Bailiang
    Brown, Scott
    Schonewille, Wouter J.
    van der Hoeven, Erik
    Puetz, Volker
    Marquering, Henk A.
    DIAGNOSTICS, 2021, 11 (09)
  • [48] Attenuation Changes in ASPECTS Regions: A Surrogate for CT Perfusion-based Ischemic Core in Acute Ischemic Stroke
    Reidler, Paul
    Thierfelder, Kolja M.
    Rotkopf, Lukas T.
    Fabritius, Matthias P.
    Puhr-Westerheide, Daniel
    Dorn, Franziska
    Forkert, Nils D.
    Kemmling, Andre
    Kunz, Wolfgang G.
    RADIOLOGY, 2019, 291 (02) : 450 - 457
  • [49] ASPECTS is a predictor of favorable CT perfusion in acute ischemic stroke
    Yaghi, Shadi
    Bianchi, Nicholas
    Amole, Adewumi
    Hinduja, Archana
    JOURNAL OF NEURORADIOLOGY, 2014, 41 (03) : 184 - 187
  • [50] Deep Learning-Based Automatic Classification of Ischemic Stroke Subtype Using Diffusion-Weighted Images
    Ryu, Wi-Sun
    Schellingerhout, Dawid
    Lee, Hoyoun
    Lee, Keon-Joo
    Kim, Chi Kyung
    Kim, Beom Joon
    Chung, Jong-Won
    Lim, Jae-Sung
    Kim, Joon-Tae
    Kim, Dae-Hyun
    Cha, Jae-Kwan
    Sunwoo, Leonard
    Kim, Dongmin
    Suh, Sang-Il
    Bang, Oh Young
    Bae, Hee-Joon
    Kim, Dong-Eog
    JOURNAL OF STROKE, 2024, 26 (02) : 300 - 311