Complete 3-dimensional λ-translators in the Euclidean space R4

被引:2
作者
Li, Zhi [1 ,2 ]
Wei, Guoxin [2 ]
Chen, Gangyi [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
关键词
Second fundamental form; lambda-translator; the generalized maximum principle; MEAN-CURVATURE FLOW; SELF-SHRINKERS; SINGULARITIES; SURFACES; SOLITONS;
D O I
10.1142/S1793525321500540
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain the classification theorems for 3-dimensional complete lambda-translators x: M-3 -> R-4 with constant squared norm S of the second fundamental form and constant f(4) in the Euclidean space R-4.
引用
收藏
页码:71 / 124
页数:54
相关论文
共 34 条
[21]   Isometric deformations of the κ1/4-flow translators in R3 with helicoidal symmetry [J].
Lee, Hojoo .
COMPTES RENDUS MATHEMATIQUE, 2013, 351 (11-12) :477-482
[22]   Rotational hypersurfaces family satisfying Ln-3G=AG in the n-dimensional Euclidean space [J].
Guler, Erhan ;
Turgay, Nurettin Cenk .
ADVANCES IN APPLIED MATHEMATICS, 2025, 167
[23]   On minimal immersions of a singular non-CSC extremal Kahler metric into 3-dimensional space forms [J].
Wei, Zhiqiang ;
Wu, Yingyi .
GEOMETRIAE DEDICATA, 2023, 217 (02)
[24]   A conformal boundary for space-times based on light-like geodesics: The 3-dimensional case [J].
Bautista, A. ;
Ibort, A. ;
Lafuente, J. ;
Low, R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02) :022503
[25]   Complete Space-like λ-surfaces in the Minkowski Space R1~3 with the Second Fundamental Form of Constant Length [J].
Xing Xiao LI ;
Yang Yang LIU ;
Rui Na QIAO .
Acta Mathematica Sinica,English Series, 2020, (05) :559-577
[26]   SPACELIKE CONSTANT MEAN CURVATURE AND MAXIMAL SURFACES IN 3-DIMENSIONAL DE SITTER SPACE VIA IWASAWA SPLITTING [J].
Ogata, Yuta .
TSUKUBA JOURNAL OF MATHEMATICS, 2016, 39 (02) :259-284
[27]   Compact spacelike surfaces in the 3-dimensional de Sitter space with non-degenerate second fundamental form [J].
Aledo, JA ;
Romero, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 19 (01) :97-111
[28]   Complete Lagrangian self-shrinkers in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {R}}^4$$\end{document} [J].
Qing-Ming Cheng ;
Hiroaki Hori ;
Guoxin Wei .
Mathematische Zeitschrift, 2022, 301 (4) :3417-3468
[29]   COMPREHENSIVE STUDY OF PARAMETERS FOR CHARACTERIZING 3-DIMENSIONAL SURFACE-TOPOGRAPHY .4. PARAMETERS FOR CHARACTERIZING SPATIAL AND HYBRID PROPERTIES [J].
DONG, WP ;
SULLIVAN, PJ ;
STOUT, KJ .
WEAR, 1994, 178 (1-2) :45-60
[30]   2-Dimensional complete self-shrinkers in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {R}^3$$\end{document} [J].
Qing-Ming Cheng ;
Shiho Ogata .
Mathematische Zeitschrift, 2016, 284 :537-542