Multi-Robot Task Allocation Using Multimodal Multi-Objective Evolutionary Algorithm Based on Deep Reinforcement Learning

被引:2
|
作者
Miao Z. [1 ]
Huang W. [2 ]
Zhang Y. [3 ]
Fan Q. [1 ]
机构
[1] Logistics Research Center, Shanghai Maritime University, Shanghai
[2] Key Laboratory of Control of Power Transmission and Conversion of Ministry of Education, Shanghai Jiao Tong University, Shanghai
[3] Key Laboratory of Marine Technology and Control Engineering of Ministry of Communications, Shanghai Maritime University, Shanghai
基金
中国国家自然科学基金;
关键词
A; deep reinforcement learning; multi-robot cooperation; multi-robot task allocation; multimodal multi-objective evolutionary algorithm; path planning; TP301.6;
D O I
10.1007/s12204-023-2679-7
中图分类号
学科分类号
摘要
The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation. To improve the effectiveness, robustness, and safety of multi-robot collaborative systems, a multimodal multi-objective evolutionary algorithm based on deep reinforcement learning is proposed in this paper. The improved multimodal multi-objective evolutionary algorithm is used to solve multi-robot task allocation problems. Moreover, a deep reinforcement learning strategy is used in the last generation to provide a high-quality path for each assigned robot via an end-to-end manner. Comparisons with three popular multimodal multi-objective evolutionary algorithms on three different scenarios of multi-robot task allocation problems are carried out to verify the performance of the proposed algorithm. The experimental test results show that the proposed algorithm can generate sufficient equivalent schemes to improve the availability and robustness of multirobot collaborative systems in uncertain environments, and also produce the best scheme to improve the overall task execution efficiency of multi-robot collaborative systems. © Shanghai Jiao Tong University 2023.
引用
收藏
页码:377 / 387
页数:10
相关论文
共 50 条
  • [31] Multi-objective multicast optimization with deep reinforcement learning
    Li, Xiaole
    Tian, Jinwei
    Wang, Cuiping
    Jiang, Yinghui
    Wang, Xing
    Wang, Jiuru
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):
  • [32] Scheduling of Continuous Annealing With a Multi-Objective Differential Evolution Algorithm Based on Deep Reinforcement Learning
    Li, Tianyang
    Meng, Ying
    Tang, Lixin
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) : 1767 - 1780
  • [33] Mapless Collaborative Navigation for a Multi-Robot System Based on the Deep Reinforcement Learning
    Chen, Wenzhou
    Zhou, Shizheng
    Pan, Zaisheng
    Zheng, Huixian
    Liu, Yong
    APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [34] A Distributed Task Allocation Algorithm for a Multi-Robot System in Healthcare Facilities
    Gautham P. Das
    Thomas M. McGinnity
    Sonya A. Coleman
    Laxmidhar Behera
    Journal of Intelligent & Robotic Systems, 2015, 80 : 33 - 58
  • [35] A Distributed Task Allocation Algorithm for a Multi-Robot System in Healthcare Facilities
    Das, Gautham P.
    McGinnity, Thomas M.
    Coleman, Sonya A.
    Behera, Laxmidhar
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2015, 80 (01) : 33 - 58
  • [36] A framework for studying multi-robot task allocation
    Gerkey, BP
    Mataric, MJ
    MULTI-ROBOT SYSTEMS: FROM SWARMS TO INTELLIGENT AUTOMATA, VOL II, 2003, : 15 - 26
  • [37] SMT-Based Dynamic Multi-Robot Task Allocation
    Tuck, Victoria Marie
    Chen, Pei-Wei
    Fainekos, Georgios
    Hoxha, Bardh
    Okamoto, Hideki
    Sastry, S. Shankar
    Seshia, Sanjit A.
    NASA FORMAL METHODS, NFM 2024, 2024, 14627 : 331 - 351
  • [38] Multi-Objective Deep Reinforcement Learning Based Time-Frequency Resource Allocation for Multi-Beam Satellite Communications
    He, Yuanzhi
    Sheng, Biao
    Yin, Hao
    Yan, Di
    Zhang, Yingchao
    CHINA COMMUNICATIONS, 2022, 19 (01) : 77 - 91
  • [39] Multi-Objective Multi-Satellite Imaging Mission Planning Algorithm for Regional Mapping Based on Deep Reinforcement Learning
    Chen, Yaxin
    Shen, Xin
    Zhang, Guo
    Lu, Zezhong
    REMOTE SENSING, 2023, 15 (16)
  • [40] Multi-Robot Path Planning Based on Multi-Objective Particle Swarm Optimization
    Thabit, Sahib
    Mohades, Ali
    IEEE ACCESS, 2019, 7 : 2138 - 2147