Multi-Robot Task Allocation Using Multimodal Multi-Objective Evolutionary Algorithm Based on Deep Reinforcement Learning

被引:2
|
作者
Miao Z. [1 ]
Huang W. [2 ]
Zhang Y. [3 ]
Fan Q. [1 ]
机构
[1] Logistics Research Center, Shanghai Maritime University, Shanghai
[2] Key Laboratory of Control of Power Transmission and Conversion of Ministry of Education, Shanghai Jiao Tong University, Shanghai
[3] Key Laboratory of Marine Technology and Control Engineering of Ministry of Communications, Shanghai Maritime University, Shanghai
基金
中国国家自然科学基金;
关键词
A; deep reinforcement learning; multi-robot cooperation; multi-robot task allocation; multimodal multi-objective evolutionary algorithm; path planning; TP301.6;
D O I
10.1007/s12204-023-2679-7
中图分类号
学科分类号
摘要
The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation. To improve the effectiveness, robustness, and safety of multi-robot collaborative systems, a multimodal multi-objective evolutionary algorithm based on deep reinforcement learning is proposed in this paper. The improved multimodal multi-objective evolutionary algorithm is used to solve multi-robot task allocation problems. Moreover, a deep reinforcement learning strategy is used in the last generation to provide a high-quality path for each assigned robot via an end-to-end manner. Comparisons with three popular multimodal multi-objective evolutionary algorithms on three different scenarios of multi-robot task allocation problems are carried out to verify the performance of the proposed algorithm. The experimental test results show that the proposed algorithm can generate sufficient equivalent schemes to improve the availability and robustness of multirobot collaborative systems in uncertain environments, and also produce the best scheme to improve the overall task execution efficiency of multi-robot collaborative systems. © Shanghai Jiao Tong University 2023.
引用
收藏
页码:377 / 387
页数:10
相关论文
共 50 条
  • [21] A Novel Multi-objective Artificial Bee Colony Algorithm for Multi-robot Path Planning
    Wang, Zhongya
    Li, Min
    Dou, Lianhang
    Li, Yang
    Zhao, Qingying
    Li, Jie
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 481 - 486
  • [22] Multi-condition multi-objective optimization using deep reinforcement learning
    Kim, Sejin
    Kim, Innyoung
    You, Donghyun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 462
  • [23] A Generic Evolutionary Algorithm for Efficient Multi-Robot Task Allocations
    Arif, Muhammad Usman
    ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11489 : 486 - 491
  • [24] Evolutionary Ensemble Learning Using Multimodal Multi-objective Optimization Algorithm Based on Grid for Wind Speed Forecasting
    Hu, Yi
    Liang, Jing
    Qu, Boyang
    Wang, Jie
    Wang, Yanli
    Wei, Panpan
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1727 - 1734
  • [25] Multi-objective path planning based on deep reinforcement learning
    Xu, Jian
    Huang, Fei
    Cui, Yunfei
    Du, Xue
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3273 - 3279
  • [26] Multi-objective crowd-aware robot navigation system using deep reinforcement learning
    Cheng, Chien-Lun
    Hsu, Chen-Chien
    Saeedvand, Saeed
    Jo, Jun-Hyung
    APPLIED SOFT COMPUTING, 2024, 151
  • [27] Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm
    Nazarahari, Milad
    Khanmirza, Esmaeel
    Doostie, Samira
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 115 : 106 - 120
  • [28] A Multi-objective Multimodal Evolutionary Algorithm Using a Novel Tournament and Environmental Selections
    Javadi, Mahrokh
    Mostaghim, Sanaz
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [29] Deep Reinforcement Learning for Multi-Objective Resource Allocation in Multi-Platoon Cooperative Vehicular Networks
    Xu, Yuanyuan
    Zhu, Kun
    Xu, Hu
    Ji, Jiequ
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (09) : 6185 - 6198
  • [30] Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey
    Orr, James
    Dutta, Ayan
    SENSORS, 2023, 23 (07)