Analysis of the leapfrog-Verlet method applied to the Kuwabara-Kono force model in discrete element method simulations of granular materials

被引:1
作者
Bufolo, Gabriel Nobrega [1 ]
Sobral, Yuri Dumaresq [1 ]
机构
[1] Univ Brasilia, Dept Matemat, Campus Univ Darcy Ribeiro, BR-70910900 Brasilia, DF, Brazil
关键词
Granular materials; Discrete element method; Verlet method; Leapfrog method; Kuwabara-Kono model; COLLISIONS; DEM;
D O I
10.1007/s10444-024-10162-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discrete element method (DEM) is a numerical technique widely used to simulate granular materials. The temporal evolution of these simulations is often performed using a Verlet-type algorithm, because of its second order and its desirable property of better energy conservation. However, when dissipative forces are considered in the model, such as the nonlinear Kuwabara-Kono model, the Verlet method no longer behaves as a second order method, but instead its order decreases to 1.5. This is caused by the singular behavior of the derivative of the damping force in the Kuwabara-Kono model at the beginning of particle collisions. In this work, we introduce a simplified problem which reproduces the singularity of the Kuwabara-Kono model and prove that the order of the method decreases from 2 to 1+q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+q$$\end{document}, where 0<q<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< q < 1$$\end{document} is the exponent of the nonlinear singular term.
引用
收藏
页数:38
相关论文
共 27 条
[1]  
Andreotti B., 2013, Granular Media: Between Fluid and Solid, DOI [10.1017/CBO9781139541008, DOI 10.1017/CBO9781139541008]
[2]  
[Anonymous], 1988, An introduction to Numerical Analysis -
[3]   Model for collisions in granular gases [J].
Brilliantov, NV ;
Spahn, F ;
Hertzsch, JM ;
Poschel, T .
PHYSICAL REVIEW E, 1996, 53 (05) :5382-5392
[4]  
Bufolo G. N., 2023, On some aspects of mathematical and computational models for simulations of granular materials
[5]   Establishing stable time-steps for DEM simulations of non-collinear planar collisions with linear contact laws [J].
Burns, Shane J. ;
Hanley, Kevin J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 110 (02) :186-200
[6]   A computational model for the simulation of dry granular materials [J].
Campello, Eduardo M. B. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 106 :89-107
[7]   An approximate formula for a partial sum of the divergent p-series [J].
Chlebus, Edward .
APPLIED MATHEMATICS LETTERS, 2009, 22 (05) :732-737
[8]   On uniqueness criteria for systems of ordinary differential equations [J].
Cid, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (01) :264-275
[9]  
Coddington A., 1961, An Introduction to Ordinary Differential Equations
[10]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65