On r-isogenies over Q(ζr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\zeta _r)$$\end{document} of elliptic curves with rational j-invariants

被引:0
作者
Filip Najman [1 ]
机构
[1] University of Zagreb,
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2024年 / 118卷 / 3期
关键词
Elliptic curves; Galois representations; 11G05;
D O I
10.1007/s13398-024-01626-8
中图分类号
学科分类号
摘要
The main goal of this paper is to determine for which odd prime numbers r can an elliptic curve E defined over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document} have an r-isogeny over Q(ζr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\zeta _r)$$\end{document}. We study this question under various assumptions on the 2-torsion of E. Apart from being a natural question itself, the mod r representations attached to such E arise in the Darmon program for the generalized Fermat equation of signature (r,r,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,r,p)$$\end{document}, playing a key role in the proof of modularity of certain Frey varieties in the recent work of Billerey, Chen, Dieulefait and Freitas.
引用
收藏
相关论文
共 24 条
[1]  
Balakrishnan J(2019)Explicit Chabauty–Kim for the split Cartan modular curve of level 13 Ann. of Math. (2) 189 885-944
[2]  
Netan Dogra J(2023)Quadratic Chabauty for modular curves: algorithms and examples Compos. Math. 159 1111-1152
[3]  
Müller S(2014)Tetrahedral elliptic curves and the local-global principle for isogenies Algebra Number Theory 8 1201-1229
[4]  
Tuitman J(2022)Serre’s constant of elliptic curves over the rationals Exp. Math. 31 518-536
[5]  
Vonk J(2000)Rigid local systems, Hilbert modular forms, and Fermat’s Last Theorem Duke Math. J. 102 413-449
[6]  
Balakrishnan JS(2021)Residual Galois representations of elliptic curves with image contained in the normaliser of a nonsplit Cartan Algebra Number Theory 15 747-771
[7]  
Netan Dogra J(2019)Serre’s uniformity conjecture for elliptic curves with rational cyclic isogenies Trans. Am. Math. Soc. 371 137-146
[8]  
Müller S(1975)Courbes modulaires de genre 1 Bull. Soc. Math. Fr. Suppl. Mém. 43 80-305
[9]  
Tuitman J(2013)On the field of definition of Math. Ann. 357 279-A745
[10]  
Vonk J(1972)-torsion points on elliptic curves over the rationals R. Acad. Sci. Paris Sér. A-B 275 A743-2421