The interface modification with polyethyleneimine enhances both ionic conductivity and interfacial compatibility of composite solid electrolyte

被引:3
|
作者
Zhao, Huan [1 ,2 ,3 ,4 ]
Zhang, Xiaobao [1 ,3 ,4 ]
Wang, Ning [1 ,3 ,4 ]
Xiao, Yiyang [1 ,3 ,4 ]
Liang, Shiang [1 ,3 ,4 ]
Zhuang, Weidong [2 ]
Yang, Juanyu [1 ,3 ,4 ]
Huang, Xiaowei [1 ,3 ,4 ]
机构
[1] Grirem Adv Mat Co Ltd, Natl Engn Res Ctr Rare Earth, Beijing 100088, Peoples R China
[2] Univ Sci & Technol Beijing USTB, Sch Met & Ecol Engn, Beijing 100083, Peoples R China
[3] Rare Earth Funct Mat Xiongan Innovat Ctr Co Ltd, Xiongan 071700, Peoples R China
[4] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
基金
中国博士后科学基金;
关键词
Composite solid electrolytes; Surface-functionalized; Interface compatibility; Ionic conductivity; All-solid-state lithium battery; LITHIUM METAL BATTERIES; POLYMER ELECTROLYTE; SEPARATOR; NETWORK; DESIGN;
D O I
10.1016/j.jallcom.2024.174460
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The composite solid electrolyte (CSE), polyethylene oxide (PEO)-Li6.4La3Zr1.4Ta0.6O12 (LLZTO), is deemed a promising candidate for all-solid-state batteries. Nevertheless, due to the poor interfacial compatibility between LLZTO nanoparticles and PEO, achieving a homogeneous dispersion of LLZTO nanoparticles within PEO is not readily attainable. The aggregation of LLZTO within PEO leads to a decline in the ionic conductivity of the CSE and poor interface stability with the electrode, ultimately resulting in deteriorated battery cyclic performance. In this work, the interface between LLZTO and PEO is designed and comprehensively investigated. Initially, dopamine self-polymerization is employed to form a uniform coating layer on the surface of LLZTO nanoparticles. Subsequently, by utilizing the amino groups present in polyethyleneimine (PEI), which can react with the phenolic hydroxyl groups of dopamine and the ether linkages in PEO, PEI serves as a bridging agent, enhancing the interfacial compatibility between LLZTO and PEO. Here it is shown that, the ionic conductivity of the LLZTO-PEO CSE containing 40 wt% modified LLZTO increases from 6.14x10(-5) S cm(-1) to 1.89x10(-4) S cm(-1). Furthermore, this CSE exhibits improved thermal stability, an enlarged electrochemical window of 4.8 V, a lithium-ion transference number of 0.45, and excellent interface stability with the lithium anode. The assembled LiFePO4 vertical bar 40 wt% LLZTO@PDA@PEI-PEO CSE vertical bar Li all-solid-state battery demonstrates an initial discharge specific capacity of 151.8 mA h g(-1) at 0.2 C, with a capacity retention of 85.8% after 200 cycles. This work provides a novel strategy for interface-modified polymer-inorganic composite solid electrolytes, which will advance the development of high-energy-density all-solid-state lithium batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A high ionic conductive PDOL/LAGP composite solid electrolyte film for Interfacial Stable solid-state lithium batteries
    Huang, Zhen-hao
    Jing, Mao-xiang
    Wang, Peng-qin
    Shao, Wen-wen
    Zhang, Zhi-peng
    Zhang, Gang
    Shen, Xiang-qian
    CERAMICS INTERNATIONAL, 2023, 49 (03) : 5510 - 5517
  • [42] Enhanced ionic conductivity and lithium dendrite suppression of polymer solid electrolytes by alumina nanorods and interfacial graphite modification
    Hu, Xin-yu
    Jing, Mao-xiang
    Yang, Hua
    Liu, Quan-yao
    Chen, Fei
    Yuan, Wei-yong
    Kang, Le
    Li, Dong-hong
    Shen, Xiang-qian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 590 : 50 - 59
  • [43] Origin of improved Na plus ionic conductivity in the NASICON-type solid state electrolyte with Sm modification
    Wang, Wenxuan
    Hu, Shan
    Liu, Zihan
    Jian, Zelang
    Chen, Wen
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 178
  • [44] A halide-oxide composite solid-state electrolyte for enhancing ionic conductivity by promoting interfacial healing through low-temperature heat treatment
    Xu, Chenyuan
    Chao, Yu
    Yang, Sisheng
    Li, Borong
    Yu, Yan
    Xu, Xiaoming
    Sun, Yulong
    Liu, Zheyuan
    Wang, Qian
    Yang, Chengkai
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2025,
  • [45] Understanding the interfacial region in organic ionic plastic crystal composite electrolyte materials by solid-state NMR
    Garcia, Yady
    O'Dell, Luke A.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2022, 61
  • [46] Weakening Ionic Coordination for High Ionic Conductivity Composite Solid Electrolytes
    Yu, Xiangnan
    Zhao, Liang
    Li, Yuhang
    Jin, Yuhai
    Politis, Denis J.
    Liu, Heli
    Wang, Huizhi
    Liu, Ming
    He, Yan-Bing
    Wang, Liliang
    ACS ENERGY LETTERS, 2024, 9 (05) : 2109 - 2115
  • [48] Mitigating Interfacial Potential Drop of Cathode-Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries
    Liang, Jia-Yan
    Zeng, Xian-Xiang
    Zhang, Xu-Dong
    Wang, Peng-Fei
    Ma, Jing-Yuan
    Yin, Ya-Xia
    Wu, Xiong-Wei
    Guo, Yu-Guo
    Wan, Li-Jun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (22) : 6767 - 6770
  • [49] Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler
    Chen, Xubin
    Put, Brecht
    Sagara, Akihiko
    Gandrud, Knut
    Murata, Mitsuhiro
    Steele, Julian A.
    Yabe, Hiroki
    Hantschel, Thomas
    Roeffaers, Maarten
    Tomiyama, Morio
    Arase, Hidekazu
    Kaneko, Yukihiro
    Shimada, Mikinari
    Mees, Maarten
    Vereecken, Philippe M.
    SCIENCE ADVANCES, 2020, 6 (02)
  • [50] Silicon-Doped Argyrodite Solid Electrolyte Li6PS5I with Improved Ionic Conductivity and Interfacial Compatibility for High-Performance All-Solid-State Lithium Batteries
    Zhang, Jun
    Li, Lujie
    Zheng, Chao
    Xia, Yang
    Gan, Yongping
    Huang, Hui
    Liang, Chu
    He, Xinping
    Tao, Xinyong
    Zhang, Wenkui
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 41538 - 41545