Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking

被引:1
作者
Francois, Pierrick [1 ,2 ]
Petit, Tom [3 ]
Auzoux, Quentin [4 ]
Le Boulch, David [1 ]
Nascimento, Isabela Zarpellon [1 ]
Besson, Jacques [2 ]
机构
[1] Univ Paris Saclay, Serv Etud Materiaux Irradies, CEA, F-91191 Gif sur Yvette, France
[2] PSL Res Univ, Ctr Materiaux, MinesParis, CNRS UMR 7633, BP 87, F-91003 Evry, France
[3] CEA, DAM, F-46500 Gramat, France
[4] Univ Paris Saclay, Serv Rech Corros & Comportement Materiaux, CEA, F-91191 Gif sur Yvette, France
关键词
Delayed hydride cracking; Fracture toughness; Zircaloy-4; STRESS INTENSITY FACTOR; ZIRCONIUM; HYDROGEN; PRECIPITATION; DISSOLUTION; REORIENTATION; TEMPERATURE; SOLUBILITY; DIRECTION; BEHAVIOR;
D O I
10.1007/s10704-024-00781-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Delayed hydride cracking (DHC) is a hydrogen embrittlement phenomenon that may potentially occur in Zircaloy-4 fuel claddings during dry storage conditions. An experimental procedure has been developed to measure the toughness of this material in the presence of DHC by allowing crack propagation through the thickness of a fuel cladding. Notched C-ring specimens, charged with 100 wppm of hydrogen, were used and pre-cracked by brittle fracture of a hydrided zone at the notch root at room temperature. The length of the pre-crack was measured on the fracture surface or cross-sections. Additionally, a finite element model was developed to determine the stress intensity factor as a function of the crack length for a given loading. Two types of tests were conducted independently to determine the fracture toughness with and without DHC, KIDHC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{I_\text {DHC}}$$\end{document} and KIC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{I_\text {C}}$$\end{document}, respectively: (i) constant load tests at 150 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 200 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, and 250 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C; (ii) monotonic tests at 25 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 200 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, and 250 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C. The results indicate the following: (1) there is no temperature influence on the DHC toughness of Zircaloy-4 between 150 and 250 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C (KIDHC is an element of 7.2;9. 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{I_\text {DHC}} \in \left[ 7.2;9.2\right] $$\end{document} MPam\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\text {m}}$$\end{document}), (2) within this temperature range, the fracture toughness of Zircaloy-4 is halved by DHC (KIC is an element of 16.9;19.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{I_\text {C}} \in \left[ 16.9;19.7 \right] $$\end{document} MPam\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\text {m}}$$\end{document}), (3) the crack propagation rate decreases with decreasing temperature and (4) the time before crack propagation increases as the temperature and loading decrease.
引用
收藏
页码:51 / 72
页数:22
相关论文
共 44 条
[1]  
Allegre S, 2011, METHOD ANAL IMAGE HY
[2]   Calculation chain for the analysis of spent nuclear fuel in long-term interim dry storage [J].
Arkoma, Asko ;
Huhtanen, Risto ;
Leppanen, Jaakko ;
Peltola, Juho ;
Pattikangas, Timo .
ANNALS OF NUCLEAR ENERGY, 2018, 119 :129-138
[3]   Hydride reorientation and its impact on mechanical properties of high burn-up and unirradiated cold-worked stress-relieved Zircaloy-4 and Zirlo TM fuel cladding [J].
Auzoux, Q. ;
Bouffioux, P. ;
Machiels, A. ;
Yagnik, S. ;
Bourdiliau, B. ;
Mallet, C. ;
Mozzani, N. ;
Colas, K. .
JOURNAL OF NUCLEAR MATERIALS, 2022, 568
[4]   Hydride reorientation in Zircaloy-4 cladding [J].
Chu, H. C. ;
Wu, S. K. ;
Kuo, R. C. .
JOURNAL OF NUCLEAR MATERIALS, 2008, 373 (1-3) :319-327
[5]   The effect of microstructure on delayed hydride cracking behavior of Zircaloy-4 fuel cladding-an international atomic energy agency coordinated research program [J].
Coleman C. ;
Grigoriev V. ;
Inozemtsev V. ;
Markelov V. ;
Roth M. ;
Makarevicius V. ;
Kim Y.S. ;
Ali K.L. ;
Chakravarrty J.K. ;
Mizrahi R. ;
Lalgudi R. .
Journal of ASTM International, 2010, 7 (05)
[6]  
Coleman C., 2012, ZIRCONIUM NUCL IND 1, P544
[7]   Effect of temperature and hydrogen concentration on the threshold stress intensity factor of radial delayed hydride cracking in fuel cladding [J].
Colldeweih, Aaron W. ;
Bertsch, Johannes .
JOURNAL OF NUCLEAR MATERIALS, 2022, 565
[8]   Radial-hydride embrittlement of high-burnup Zircaloy-4 fuel cladding [J].
Daum, Robert S. ;
Majumdar, Saurin ;
Liu, Yung ;
Billone, Michael C. .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2006, 43 (09) :1054-1067
[9]  
EPRI, 2011, DEL HYDR CRACK CONS
[10]   Creep assessment of Zry-4 cladded high burnup fuel under dry storage [J].
Feria, F. ;
Herranz, L. E. .
PROGRESS IN NUCLEAR ENERGY, 2011, 53 (04) :395-400