Automated condylar seating assessment using a deep learning-based three-step approach

被引:2
作者
Berends, Bo [1 ,2 ]
Vinayahalingam, Shankeeth [1 ]
Baan, Frank [2 ]
Fluegge, Tabea [3 ,4 ,5 ]
Maal, Thomas [2 ]
Berge, Stefaan [1 ]
de Jong, Guide [1 ]
Xi, Tong [1 ]
机构
[1] Radboud Univ Nijmegen, Dept Oral & Maxillofacial Surg, Med Ctr, POB 9101,590, NL-6500 HB Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Radboudumc 3DLab, Nijmegen, Netherlands
[3] Charite Univ Med Berlin, Dept Oral & Maxillofacial Surg, Hindenburgdamm 30, D-12203 Berlin, Germany
[4] Free Univ Berlin, Hindenburgdamm 30, D-12203 Berlin, Germany
[5] Humboldt Univ, Hindenburgdamm 30, D-12203 Berlin, Germany
关键词
Deep learning; Condylar seating; Cone-beam computed tomography; Computer-assisted planning; Digital imaging; Orthognatic surgery;
D O I
10.1007/s00784-024-05895-w
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
ObjectivesIn orthognatic surgery, one of the primary determinants for reliable three-dimensional virtual surgery planning (3D VSP) and an accurate transfer of 3D VSP to the patient in the operation room is the condylar seating. Incorrectly seated condyles would primarily affect the accuracy of maxillary-first bimaxillary osteotomies as the maxillary repositioning is dependent on the positioning of the mandible in the cone-beam computed tomography (CBCT) scan. This study aimed to develop and validate a novel tool by utilizing a deep learning algorithm that automatically evaluates the condylar seating based on CBCT images as a proof of concept.Materials and methodsAs a reference, 60 CBCT scans (120 condyles) were labeled. The automatic assessment of condylar seating included three main parts: segmentation module, ray-casting, and feed-forward neural network (FFNN). The AI-based algorithm was trained and tested using fivefold cross validation. The method's performance was evaluated by comparing the labeled ground truth with the model predictions on the validation dataset.ResultsThe model achieved an accuracy of 0.80, positive predictive value of 0.61, negative predictive value of 0.9 and F1-score of 0.71. The sensitivity and specificity of the model was 0.86 and 0.78, respectively. The mean AUC over all folds was 0.87.ConclusionThe innovative integration of multi-step segmentation, ray-casting and a FFNN demonstrated to be a viable approach for automating condylar seating assessment and have obtained encouraging results.Clinical relevanceAutomated condylar seating assessment using deep learning may improve orthognathic surgery, preventing errors and enhancing patient outcomes in maxillary-first bimaxillary osteotomies.
引用
收藏
页数:8
相关论文
共 18 条
[1]   Recent advances and clinical applications of deep learning in medical image analysis [J].
Chen, Xuxin ;
Wang, Ximin ;
Zhang, Ke ;
Fung, Kar-Ming ;
Thai, Theresa C. ;
Moore, Kathleen ;
Mannel, Robert S. ;
Liu, Hong ;
Zheng, Bin ;
Qiu, Yuchen .
MEDICAL IMAGE ANALYSIS, 2022, 79
[2]   Combining deep learning with 3D stereophotogrammetry for craniosynostosis diagnosis [J].
de Jong, Guido ;
Bijlsma, Elmar ;
Meulstee, Jene ;
Wennen, Myrte ;
van Lindert, Erik ;
Maal, Thomas ;
Aquarius, Rene ;
Delye, Hans .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   Reliability and accuracy of segmentation of mandibular condyles from different three-dimensional imaging modalities: a systematic review [J].
Kim, Justin J. ;
Nam, Hyejin ;
Kaipatur, Neelambar R. ;
Major, Paul W. ;
Flores-Mir, Carlos ;
Lagravere, Manuel O. ;
Romanyk, Daniel L. .
DENTOMAXILLOFACIAL RADIOLOGY, 2020, 49 (05)
[4]   Enhanced Surgical Outcomes in Patients With Skeletal Class III Facial Asymmetry by 3-Dimensional Surgical Simulation [J].
Ko, Ellen Wen-Ching ;
Lin, Cheng-Hui ;
Chen, Ying-An ;
Chen, Yu-Ray .
JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2018, 76 (05) :1073-1083
[5]   Splintless surgery using patient-specific osteosynthesis in Le Fort I osteotomies: a randomized controlled multi centre trial [J].
Kraeima, J. ;
Schepers, R. H. ;
Spijkervet, F. K. L. ;
Maal, T. J. J. ;
Baan, F. ;
Witjes, M. J. H. ;
Jansma, J. .
INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2020, 49 (04) :454-460
[6]   Automatic Segmentation of Mandibular Ramus and Condyles [J].
Le, Celia ;
Deleat-Besson, Romain ;
Prieto, Juan ;
Brosset, Serge ;
Dumont, Maxime ;
Zhang, Winston ;
Cevidanes, Lucia ;
Bianchi, Jonas ;
Ruellas, Antonio ;
Gomes, Liliane ;
Gurgel, Marcela ;
Massaro, Camila ;
Aliaga-Del Castillo, Aron ;
Yatabe, Marilia ;
Benavides, Erika ;
Soki, Fabiana ;
Al Turkestani, Najla ;
Evangelista, Karine ;
Goncalves, Joao ;
Valladares-Neto, Jose ;
Garcia Silva, Maria Alves ;
Chaves Jr, Cauby ;
Costa, Fabio ;
Garib, Daniela ;
Oh, Heesoo ;
Gryak, Jonathan ;
Styner, Martin ;
Fillion-Robin, Jean-Christophe ;
Paniagua, Beatriz ;
Najarian, Kayvan ;
Soroushmehr, Reza .
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, :2952-2955
[7]   Achievability of 3D planned bimaxillary osteotomies: maxillafirst versus mandible-first surgery [J].
Liebregts, Jeroen ;
Baan, Frank ;
de Koning, Martien ;
Ongkosuwito, Edwin ;
Berge, Stefaan ;
Maal, Thomas ;
Xi, Tong .
SCIENTIFIC REPORTS, 2017, 7
[8]   Sequencing Bimaxillary Surgery: Mandible First [J].
Perez, Daniel ;
Ellis, Edward, III .
JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2011, 69 (08) :2217-2224
[9]   Virtual Planning and 3D Printing in Contemporary Orthognathic Surgery [J].
Roy, Tulsi ;
Steinbacher, Derek M. .
SEMINARS IN PLASTIC SURGERY, 2022, 36 (03) :169-182
[10]   Does computer-aided surgical simulation improve efficiency in bimaxillary orthognathic surgery? [J].
Schwartz, H. C. .
INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2014, 43 (05) :572-576