Generation-based Multi-view Contrast for Self-supervised Graph Representation Learning

被引:0
作者
Han, Yuehui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Xiaolingwei St, Nanjing 210000, Jiangsu, Peoples R China
关键词
Graph representation learning; contrastive learning; multi-view generation;
D O I
10.1145/3645095
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph contrastive learning has made remarkable achievements in the self-supervised representation learning of graph-structured data. By employing perturbation function (i.e., perturbation on the nodes or edges of graph), most graph contrastive learning methods construct contrastive samples on the original graph. However, the perturbation-based data augmentation methods randomly change the inherent information (e.g., attributes or structures) of the graph. Therefore, after nodes embedding on the perturbed graph, we cannot guarantee the validity of the contrastive samples as well as the learned performance of graph contrastive learning. To this end, in this article, we propose a novel generation-based multi-view contrastive learning framework (GMVC) for self-supervised graph representation learning, which generates the contrastive samples based on our generator rather than perturbation function. Specifically, after nodes embedding on the original graphwe first employ random walk in the neighborhood to developmultiple relevant node sequences for each anchor node. We then utilize the transformer to generate the representations of relevant contrastive samples of anchor node based on the features and structures of the sampled node sequences. Finally, by maximizing the consistency between the anchor view and the generated views, we force the model to effectively encode graph information into nodes embeddings. We perform extensive experiments of node classification and link prediction tasks on eight benchmark datasets, which verify the effectiveness of our generation-based multi-view graph contrastive learning method.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Contrast-Reconstruction Representation Learning for Self-Supervised Skeleton-Based Action Recognition
    Wang, Peng
    Wen, Jun
    Si, Chenyang
    Qian, Yuntao
    Wang, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6224 - 6238
  • [32] Self-supervised Graph Learning with Segmented Graph Channels
    Gao, Hang
    Li, Jiangmeng
    Zheng, Changwen
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 293 - 308
  • [33] Scalable self-supervised graph representation learning via enhancing and contrasting subgraphs
    Yizhu Jiao
    Yun Xiong
    Jiawei Zhang
    Yao Zhang
    Tianqi Zhang
    Yangyong Zhu
    Knowledge and Information Systems, 2022, 64 : 235 - 260
  • [34] SimGRL: a simple self-supervised graph representation learning framework via triplets
    Huang, Da
    Lei, Fangyuan
    Zeng, Xi
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (05) : 5049 - 5062
  • [35] Scalable self-supervised graph representation learning via enhancing and contrasting subgraphs
    Jiao, Yizhu
    Xiong, Yun
    Zhang, Jiawei
    Zhang, Yao
    Zhang, Tianqi
    Zhu, Yangyong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (01) : 235 - 260
  • [36] SimGRL: a simple self-supervised graph representation learning framework via triplets
    Da Huang
    Fangyuan Lei
    Xi Zeng
    Complex & Intelligent Systems, 2023, 9 : 5049 - 5062
  • [37] Graph Self-Contrast Representation Learning
    Chen, Minjie
    Cheng, Yao
    Wang, Ye
    Li, Xiang
    Gao, Ming
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 31 - 40
  • [38] Self-supervised Adaptive Aggregator Learning on Graph
    Lin, Bei
    Luo, Binli
    He, Jiaojiao
    Gui, Ning
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT III, 2021, 12714 : 29 - 41
  • [39] Self-supervised Learning of Visual Graph Matching
    Liu, Chang
    Zhang, Shaofeng
    Yang, Xiaokang
    Yan, Junchi
    COMPUTER VISION, ECCV 2022, PT XXIII, 2022, 13683 : 370 - 388
  • [40] Decoupled representation for multi-view learning
    Sun, Shiding
    Wang, Bo
    Tian, Yingjie
    PATTERN RECOGNITION, 2024, 151