Non-Intrusive Load Monitoring Based on Multiscale Attention Mechanisms

被引:1
|
作者
Yao, Lei [1 ]
Wang, Jinhao [1 ]
Zhao, Chen [1 ]
机构
[1] Univ Shanghai Sci & Technol, Dept Elect Engn, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
non-intrusive load monitoring; smart home; parallel multiscale attention mechanisms; smart grid; machine learning; ENERGY EFFICIENCY; POWER;
D O I
10.3390/en17081944
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the development of smart grids and new power systems, the combination of non-intrusive load identification technology and smart home technology can provide users with the operating conditions of home appliances and equipment, thus reducing home energy loss and improving users' ability to demand a response. This paper proposes a non-intrusive load decomposition model with a parallel multiscale attention mechanism (PMAM). The model can extract both local and global feature information and fuse it through a parallel multiscale network. This improves the attention mechanism's ability to capture feature information over long time periods. To validate the model's decomposition ability, we combined the PMAM model with four benchmark models: the Long Short-Term Memory (LSTM) recurrent neural network model, the Time Pooling-based Load Disaggregation Model (TPNILM), the Extreme Learning Machine (ELM), and the Load Disaggregation Model without Parallel Multi-scalar Attention Mechanisms (UNPMAM). The model was trained on the publicly available UK-DALE dataset and tested. The models' test results were quantitatively evaluated using a confusion matrix. This involved calculating the F1 score of the load decomposition. A higher F1 score indicates better model decomposition performance. The results indicate that the PMAM model proposed in this paper maintains an F1 score above 0.9 for the decomposition of three types of electrical equipment under the same household user, which is 3% higher than that of the other benchmark models on average. In the cross-household test, the PMAM also demonstrated a better decomposition ability, with the F1 score maintained above 0.85, and the mean absolute error (MAE) decreased by 5.3% on average compared with that of the UNPMAM.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Non-Intrusive Load Monitoring
    Fortuna, Luigi
    Buscarino, Arturo
    SENSORS, 2022, 22 (17)
  • [2] A Hybrid Attention Model for Non-intrusive Load Monitoring based on Time Series Feature
    Meng, Zhaorui
    Xie, Xiaozhu
    Xie, Yanqi
    Sun, Jinhua
    IAENG International Journal of Computer Science, 2024, 51 (04) : 396 - 400
  • [3] Non-intrusive load monitoring based on harmonic characteristics
    Li, Yaqian
    Yang, Yuquan
    Sima, Kai
    Li, Boyang
    Sun, Tong
    Li, Xue
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY, 2021, 183 : 776 - 782
  • [4] Non-Intrusive Load Monitoring: A Review
    Schirmer, Pascal A.
    Mporas, Iosif
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (01) : 769 - 784
  • [5] A Survey on the Non-intrusive Load Monitoring
    Deng X.-P.
    Zhang G.-Q.
    Wei Q.-L.
    Peng W.
    Li C.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (03): : 644 - 663
  • [6] A Non-Intrusive Load Monitoring System Based on A Cascaded Method
    Lian, K. L.
    Tung, K. S.
    Su, Y. C.
    2013 3RD INTERNATIONAL CONFERENCE ON ELECTRIC POWER AND ENERGY CONVERSION SYSTEMS (EPECS), 2013,
  • [7] Adaptive Non-Intrusive Load Monitoring Based on Feature Fusion
    Kang, Ju-Song
    Yu, Miao
    Lu, Lingxia
    Wang, Bingnan
    Bao, Zhejing
    IEEE SENSORS JOURNAL, 2022, 22 (07) : 6985 - 6994
  • [8] Non-intrusive load monitoring based on graph signal processing
    Kumar, Amit
    Meena, Hemant Kumar
    2017 RECENT DEVELOPMENTS IN CONTROL, AUTOMATION AND POWER ENGINEERING (RDCAPE), 2017, : 18 - 21
  • [9] Non-Intrusive Load Monitoring: A Power Consumption Based Relaxation
    Anderson, Kyle D.
    Moura, Jose M. F.
    Berges, Mario
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 215 - 219
  • [10] Review of Non-intrusive Load Appliance Monitoring
    Dan, Wang
    Li, Huang Xiao
    Ce, Ye Shu
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 18 - 23