DTPP-DFL: A Dropout-Tolerated Privacy-Preserving Decentralized Federated Learning Framework

被引:0
|
作者
Chen, Tao [1 ]
Wang, Xiao-Fen [1 ]
Dai, Hong-Ning [2 ]
Yang, Hao-Miao [1 ]
Zhou, Rang [3 ]
Zhang, Xiao-Song [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Hong Kong Baptist Univ, Hong Kong, Peoples R China
[3] Chengdu Univ Technol, Chengdu, Peoples R China
来源
IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM | 2023年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Privacy-Preserving; Dropout-Tolerated; Decentralized; Federated Learning; Blockchain;
D O I
10.1109/GLOBECOM54140.2023.10437934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated Learning (FL) enables participants to collaboratively train a global model by sharing their gradients without the need for uploading privacy-sensitive data. Despite certain privacy preservation of FL, local gradients in plaintext may reveal data privacy when gradient-leakage attacks are launched. To further protect local gradients, privacy-preserving FL schemes have been proposed. However, these existing schemes that require a fully trusted central server are vulnerable to a single point of failure and malicious attacks. Although more robust privacy-preserving decentralized FL schemes have recently been proposed on multiple servers, they will fail to aggregate the local gradients with message transmission errors or data packet dropping out due to the instability of the communication network. To address these challenges, we propose a novel privacy-preserving decentralized FL scheme system based on the blockchain and a modified identity-based homomorphic broadcast encryption algorithm. This scheme achieves both privacy protection and error/dropout tolerance. Security analysis shows that the proposed scheme can protect the privacy of the local gradients against both internal and external adversaries, and protect the privacy of the global gradients against external adversaries. Moreover, it ensures the correctness of local gradients' aggregation even when transmission error or data packet dropout happens. Extensive experiments demonstrate that the proposed scheme guarantees model accuracy and achieves performance efficiency.
引用
收藏
页码:2554 / 2559
页数:6
相关论文
共 50 条
  • [21] A Framework for Privacy-Preserving in IoV Using Federated Learning With Differential Privacy
    Adnan, Muhammad
    Syed, Madiha Haider
    Anjum, Adeel
    Rehman, Semeen
    IEEE ACCESS, 2025, 13 : 13507 - 13521
  • [22] A flexible and privacy-preserving federated learning framework based on logistic regression
    Wang, Junkai
    Xiong, Ling
    Liu, Zhicai
    Wang, Huan
    Li, Chunlin
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 116
  • [23] POSTER: Privacy-preserving Federated Active Learning
    Kurniawan, Hendra
    Mambo, Masahiro
    SCIENCE OF CYBER SECURITY, SCISEC 2022 WORKSHOPS, 2022, 1680 : 223 - 226
  • [24] PPFLV: privacy-preserving federated learning with verifiability
    Zhou, Qun
    Shen, Wenting
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12727 - 12743
  • [25] PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Dai, Hua
    Liu, Guoxiu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1905 - 1918
  • [26] Privacy-preserving federated learning framework in multimedia courses recommendation
    Qin, YangJie
    Li, Ming
    Zhu, Jia
    WIRELESS NETWORKS, 2023, 29 (04) : 1535 - 1544
  • [27] A Privacy-Preserving and Verifiable Federated Learning Scheme
    Zhang, Xianglong
    Fu, Anmin
    Wang, Huaqun
    Zhou, Chunyi
    Chen, Zhenzhu
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [28] Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Huang, Yuxian
    Dai, Hua
    Xiang, Yang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 565 - 580
  • [29] Robust privacy-preserving federated learning framework for IoT devices
    Han, Zhaoyang
    Zhou, Lu
    Ge, Chunpeng
    Li, Juan
    Liu, Zhe
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 9655 - 9673
  • [30] A Game-theoretic Framework for Privacy-preserving Federated Learning
    Zhang, Xiaojin
    Fan, Lixin
    Wang, Siwei
    Li, Wenjie
    Chen, Kai
    Yang, Qiang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)