SPACE-TIME FINITE ELEMENT METHODS FOR DISTRIBUTED OPTIMAL CONTROL OF THE WAVE EQUATION

被引:3
|
作者
Loscher, Richard [1 ]
Steinbach, Olaf [1 ]
机构
[1] Graz Univ Technol, Inst Angew Math, A-8010 Graz, Austria
关键词
distributed optimal control problem; wave equation; space-time finite element meth-ods; a priori error estimates; adaptivity; TIKHONOV REGULARIZATION; DISCRETIZATION;
D O I
10.1137/22M1532962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider space-time tracking-type distributed optimal control problems for the wave equation in the space-time domain Q := \Omega x (0, T) \subset \BbbR n+1, where the control is assumed to be in 0;,0 (Q)]*, rather than in L2(Q), which is more common. While the latter ensures 0;0,(Q), this does not define a solution isomorphism. Hence, we use an appropriate state space X such that the wave operator becomes an isomorphism from X onto completely unstructured but shape regular simplicial meshes, we derive a priori estimates for the error II uwidetilde \\varrho h - uIIL2(Q) between the computed space-time finite element solution uwidetilde \\varrho h and the target function u with respect to the regularization parameter \varrho , and the space-time finite element mesh size h, depending on the regularity of the desired state u. These estimates lead to the optimal choice \varrho = h2 in order to define the regularization parameter \varrho for a given space-time finite element mesh size h or to determine the required mesh size h when \varrho is a given constant representing the costs of the control. The theoretical results will be supported by numerical examples with targets of different regularities, including discontinuous targets. Furthermore, an adaptive space-time finite element scheme is proposed and numerically analyzed.
引用
收藏
页码:452 / 475
页数:24
相关论文
共 50 条
  • [41] SPACE-TIME FINITE ELEMENT METHOD FOR SCHRDINGER EQUATION AND ITS CONSERVATION
    汤琼
    陈传淼
    刘罗华
    AppliedMathematicsandMechanics(EnglishEdition), 2006, (03) : 335 - 340
  • [42] A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems
    Neitzel, Ira
    Vexler, Boris
    NUMERISCHE MATHEMATIK, 2012, 120 (02) : 345 - 386
  • [43] A Space-Time Finite Element Method for the Fractional Ginzburg-Landau Equation
    Liu, Jincun
    Li, Hong
    Liu, Yang
    FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [44] Space-time finite element method for schrödinger equation and its conservation
    Qiong Tang
    Chuan-miao Chen
    Luo-hua Liu
    Applied Mathematics and Mechanics, 2006, 27 : 335 - 340
  • [45] OPTIMAL MANEUVER OF A FLEXIBLE ARM BY SPACE-TIME FINITE-ELEMENT METHOD
    BENTAL, A
    BARYOSEPH, P
    FLASHNER, H
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1995, 18 (06) : 1459 - 1462
  • [46] The research of space-time coupled spectral element method for acoustic wave equation
    Geng, Yanhui
    Qin, Guoliang
    Wang, Yang
    He, Wei
    Shengxue Xuebao/Acta Acustica, 2013, 38 (03): : 306 - 318
  • [47] Spacetime finite element methods for control problems subject to the wave equation
    Burman, Erik
    Feizmohammadi, Ali
    Munch, Arnaud
    Oksanen, Lauri
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [48] GALERKIN FINITE ELEMENT APPROXIMATIONS FOR STOCHASTIC SPACE-TIME FRACTIONAL WAVE EQUATIONS
    Li, Yajing
    Wang, Yejuan
    Deng, Weihua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 3173 - 3202
  • [49] Space-time finite element methods stabilized using bubble function spaces
    Toulopoulos, Ioannis
    APPLICABLE ANALYSIS, 2020, 99 (07) : 1153 - 1170
  • [50] Generalized multiscale finite element methods for space-time heterogeneous parabolic equations
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Ye, Shuai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) : 419 - 437