SPACE-TIME FINITE ELEMENT METHODS FOR DISTRIBUTED OPTIMAL CONTROL OF THE WAVE EQUATION

被引:3
|
作者
Loscher, Richard [1 ]
Steinbach, Olaf [1 ]
机构
[1] Graz Univ Technol, Inst Angew Math, A-8010 Graz, Austria
关键词
distributed optimal control problem; wave equation; space-time finite element meth-ods; a priori error estimates; adaptivity; TIKHONOV REGULARIZATION; DISCRETIZATION;
D O I
10.1137/22M1532962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider space-time tracking-type distributed optimal control problems for the wave equation in the space-time domain Q := \Omega x (0, T) \subset \BbbR n+1, where the control is assumed to be in 0;,0 (Q)]*, rather than in L2(Q), which is more common. While the latter ensures 0;0,(Q), this does not define a solution isomorphism. Hence, we use an appropriate state space X such that the wave operator becomes an isomorphism from X onto completely unstructured but shape regular simplicial meshes, we derive a priori estimates for the error II uwidetilde \\varrho h - uIIL2(Q) between the computed space-time finite element solution uwidetilde \\varrho h and the target function u with respect to the regularization parameter \varrho , and the space-time finite element mesh size h, depending on the regularity of the desired state u. These estimates lead to the optimal choice \varrho = h2 in order to define the regularization parameter \varrho for a given space-time finite element mesh size h or to determine the required mesh size h when \varrho is a given constant representing the costs of the control. The theoretical results will be supported by numerical examples with targets of different regularities, including discontinuous targets. Furthermore, an adaptive space-time finite element scheme is proposed and numerically analyzed.
引用
收藏
页码:452 / 475
页数:24
相关论文
共 50 条
  • [31] Space time stabilized finite element methods for a unique continuation problem subject to the wave equation
    Burman, Erik
    Feizmohammadi, Ali
    Muench, Arnaud
    Oksanen, Lauri
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S969 - S991
  • [32] ANALYSIS OF SOME MOVING SPACE-TIME FINITE-ELEMENT METHODS
    BANK, RE
    SANTOS, RF
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (01) : 1 - 18
  • [33] A PRIORI ERROR ESTIMATES FOR SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC TIME-OPTIMAL CONTROL PROBLEMS
    Bonifacius, Lucas
    Pieper, Konstantin
    Vexler, Boris
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (01) : 129 - 162
  • [34] FINITE-ELEMENT COLLOCATION METHODS FOR SPACE-TIME REACTOR DYNAMICS
    GROSSMAN, LM
    HENNART, JP
    MEADE, D
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1982, 41 : 311 - 312
  • [35] Surface And Hypersurface Meshing Techniques for Space-Time Finite Element Methods
    Anderson, Jude T.
    Williams, David M.
    Corrigan, Andrew
    COMPUTER-AIDED DESIGN, 2023, 163
  • [36] Unified Space-Time Finite Element Methods for Dissipative Continua Dynamics
    Kim, Jinkyu
    Dargush, Gary F.
    Roh, Hwasung
    Ryu, Jaeho
    Kim, Dongkeon
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (02)
  • [37] Foundations of space-time finite element methods: Polytopes, interpolation, and integration
    Frontin, Cory, V
    Walters, Gage S.
    Witherden, Freddie D.
    Lee, Carl W.
    Williams, David M.
    Darmofal, David L.
    APPLIED NUMERICAL MATHEMATICS, 2021, 166 : 92 - 113
  • [38] Adaptive space-time finite element methods for parabolic optimization problems
    Meidner, Dominik
    Vexler, Boris
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (01) : 116 - 142
  • [39] Posteriori Error Analysis of a P2-CDG Space-Time Finite Element Method for the Wave Equation
    Guo, Yuling
    Huang, Jianguo
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (03): : 662 - 678
  • [40] An α-robust analysis of finite element method for space-time fractional diffusion equation
    Yang, Yi
    Huang, Jin
    Li, Hu
    NUMERICAL ALGORITHMS, 2025, 98 (01) : 165 - 190