SPACE-TIME FINITE ELEMENT METHODS FOR DISTRIBUTED OPTIMAL CONTROL OF THE WAVE EQUATION

被引:3
|
作者
Loscher, Richard [1 ]
Steinbach, Olaf [1 ]
机构
[1] Graz Univ Technol, Inst Angew Math, A-8010 Graz, Austria
关键词
distributed optimal control problem; wave equation; space-time finite element meth-ods; a priori error estimates; adaptivity; TIKHONOV REGULARIZATION; DISCRETIZATION;
D O I
10.1137/22M1532962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider space-time tracking-type distributed optimal control problems for the wave equation in the space-time domain Q := \Omega x (0, T) \subset \BbbR n+1, where the control is assumed to be in 0;,0 (Q)]*, rather than in L2(Q), which is more common. While the latter ensures 0;0,(Q), this does not define a solution isomorphism. Hence, we use an appropriate state space X such that the wave operator becomes an isomorphism from X onto completely unstructured but shape regular simplicial meshes, we derive a priori estimates for the error II uwidetilde \\varrho h - uIIL2(Q) between the computed space-time finite element solution uwidetilde \\varrho h and the target function u with respect to the regularization parameter \varrho , and the space-time finite element mesh size h, depending on the regularity of the desired state u. These estimates lead to the optimal choice \varrho = h2 in order to define the regularization parameter \varrho for a given space-time finite element mesh size h or to determine the required mesh size h when \varrho is a given constant representing the costs of the control. The theoretical results will be supported by numerical examples with targets of different regularities, including discontinuous targets. Furthermore, an adaptive space-time finite element scheme is proposed and numerically analyzed.
引用
收藏
页码:452 / 475
页数:24
相关论文
共 50 条
  • [1] UNSTRUCTURED SPACE-TIME FINITE ELEMENT METHODS FOR OPTIMAL CONTROL OF PARABOLIC EQUATIONS
    Langer, Ulrich
    Steinbach, Olaf
    Troltzsch, Fredi
    Yang, Huidong
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02) : A744 - A771
  • [2] Adaptive space-time finite element methods for parabolic optimal control problems
    Langer, Ulrich
    Schafelner, Andreas
    JOURNAL OF NUMERICAL MATHEMATICS, 2022, 30 (04) : 247 - 266
  • [3] Adaptive space-time finite element methods for the wave equation on unbounded domains
    Thompson, LL
    He, DT
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (18-20) : 1947 - 2000
  • [4] Space-Time Least-Squares Finite Element Methods for Parabolic Distributed Optimal Control Problems
    Fuhrer, Thomas
    Karkulik, Michael
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (03) : 673 - 691
  • [5] Robust space-time finite element methods for parabolic distributed optimal control problems with energy regularization
    Langer, Ulrich
    Steinbach, Olaf
    Yang, Huidong
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (02)
  • [6] Simultaneous Space-Time Finite Element Methods for Parabolic Optimal Control Problems
    Langer, Ulrich
    Schafelner, Andreas
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 314 - 321
  • [7] Space-time finite element approximation of parabolic optimal control problems
    Gong, W.
    Hinze, M.
    Zhou, Z. J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (02) : 111 - 145
  • [8] Space-time boundary element methods for the heat equation
    Dohr, Stefan
    Niino, Kazuki
    Steinbach, Olaf
    SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS, 2019, 25 : 1 - 60
  • [9] SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH ENERGY REGULARIZATION
    Langer, Ulrich
    Steinbach, Olaf
    Troltzsch, Fredi
    Yang, Huidong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) : 675 - 695
  • [10] Space time stabilized finite element methods for a unique continuation problem subject to the wave equation
    Burman, Erik
    Feizmohammadi, Ali
    Muench, Arnaud
    Oksanen, Lauri
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S969 - S991