Cancellative hypergraphs and Steiner triple systems

被引:2
|
作者
Liu, Xizhi [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
关键词
Hypergraph Tur & aacute; n problem; Stability; Cancellative triple system; Steiner triple system; Feasible region; DENSITY; NUMBER;
D O I
10.1016/j.jctb.2024.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A triple system is cancellative if it does not contain three distinct sets A, B, C such that the symmetric difference of A and B is contained in C. We show that every cancellative triple system 7-t that satisfies a particular inequality between the sizes of 7-t and its shadow must be structurally close to the balanced blowup of some Steiner triple system. Our result contains a stability theorem for cancellative triple systems due to Keevash and Mubayi as a special case. It also implies that the boundary of the feasible region of cancellative triple systems has infinitely many local maxima, thus giving the first example showing this phenomenon. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:303 / 337
页数:35
相关论文
共 50 条
  • [21] STEINER TRIPLE SYSTEMS OF ORDER 21 WITH SUBSYSTEMS
    Heinlein, Daniel
    Ostergard, Patric R. J.
    GLASNIK MATEMATICKI, 2023, 58 (02) : 233 - 245
  • [22] Distance and fractional isomorphism in Steiner triple systems
    Forbes A.D.
    Grannell M.J.
    Griggs T.S.
    Rendiconti del Circolo Matematico di Palermo, 2007, 56 (1) : 17 - 32
  • [23] Point Code Minimum Steiner Triple Systems
    Colbourn C.J.
    Ling A.C.H.
    Designs, Codes and Cryptography, 1998, 14 (2) : 141 - 146
  • [24] Egalitarian Steiner triple systems for data popularity
    Colbourn, Charles J.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (10) : 2373 - 2395
  • [25] Sparse Steiner triple systems of order 21
    Kokkala, Janne I.
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (02) : 75 - 83
  • [26] 3-pyramidal Steiner triple systems
    Buratti, Marco
    Rinaldi, Gloria
    Traetta, Tommaso
    ARS MATHEMATICA CONTEMPORANEA, 2017, 13 (01) : 95 - 106
  • [27] High-girth Steiner triple systems
    Kwan, Matthew
    Sah, Ashwin
    Sawhney, Mehtaab
    Simkin, Michael
    ANNALS OF MATHEMATICS, 2024, 200 (03) : 1059 - 1156
  • [28] STEINER TRIPLE SYSTEMS WITHOUT PARALLEL CLASSES
    Bryant, Darryn
    Horsley, Daniel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 693 - 696
  • [29] Some new perfect Steiner triple systems
    Grannell, MJ
    Griggs, TS
    Murphy, JP
    JOURNAL OF COMBINATORIAL DESIGNS, 1999, 7 (05) : 327 - 330
  • [30] Small Embeddings of Partial Steiner Triple Systems
    Horsley, Daniel
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (08) : 343 - 365