Evaluating strategic structures in multi-agent inverse reinforcement learning

被引:0
|
作者
Fu J. [1 ]
Tacchetti A. [2 ]
Perolat J. [2 ]
Bachrach Y. [2 ]
机构
[1] University of California, Berkeley, Department of Electrical Engineering & Computer Science, Berkeley, 94720, CA
[2] DeepMind, 6 Pancras Square, London
来源
关键词
63;
D O I
10.1613/JAIR.1.12594
中图分类号
学科分类号
摘要
A core question in multi-agent systems is understanding the motivations for an agent's actions based on their behavior. Inverse reinforcement learning provides a framework for extracting utility functions from observed agent behavior, casting the problem as finding domain parameters which induce such a behavior from rational decision makers. We show how to efficiently and scalably extend inverse reinforcement learning to multi-agent settings, by reducing the multi-agent problem to N single-agent problems while still satisfying rationality conditions such as strong rationality. However, we observe that rewards learned naively tend to lack insightful structure, which causes them to produce undesirable behavior when optimized in games with different players from those encountered during training. We further investigate conditions under which rewards or utility functions can be precisely identified, on problem domains such as normal-form and Markov games, as well as auctions, where we show we can learn reward functions that properly generalize to new settings. © 2021 AI Access Foundation. All rights reserved.
引用
收藏
页码:925 / 951
页数:26
相关论文
共 50 条
  • [41] Multi-agent reinforcement learning for character control
    Li, Cheng
    Fussell, Levi
    Komura, Taku
    VISUAL COMPUTER, 2021, 37 (12): : 3115 - 3123
  • [42] Parallel and distributed multi-agent reinforcement learning
    Kaya, M
    Arslan, A
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, 2001, : 437 - 441
  • [43] Coding for Distributed Multi-Agent Reinforcement Learning
    Wang, Baoqian
    Xie, Junfei
    Atanasov, Nikolay
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 10625 - 10631
  • [44] Multi-agent Reinforcement Learning for Service Composition
    Lei, Yu
    Yu, Philip S.
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2016), 2016, : 790 - 793
  • [45] Multi-agent reinforcement learning with adaptive mimetism
    Yamaguchi, T
    Miura, M
    Yachida, M
    ETFA '96 - 1996 IEEE CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, PROCEEDINGS, VOLS 1 AND 2, 1996, : 288 - 294
  • [46] Multi-agent Reinforcement Learning in Network Management
    Bagnasco, Ricardo
    Serrat, Joan
    SCALABILITY OF NETWORKS AND SERVICES, PROCEEDINGS, 2009, 5637 : 199 - 202
  • [47] Reinforcement learning of multi-agent communicative acts
    Hoet S.
    Sabouret N.
    Revue d'Intelligence Artificielle, 2010, 24 (02) : 159 - 188
  • [48] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [49] Quantum Multi-Agent Meta Reinforcement Learning
    Yun, Won Joon
    Park, Jihong
    Kim, Joongheon
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11087 - 11095
  • [50] Multi-agent reinforcement learning for intrusion detection
    Servin, Arturo
    Kudenko, Daniel
    ADAPTIVE AGENTS AND MULTI-AGENT SYSTEMS, 2008, 4865 : 211 - 223