共 45 条
[1]
Abhikriti N., Sunita D., Enhanced task scheduling algorithm using multi-objective function for cloud computing framework, International Conference on Next Generation Computing Technologies, pp. 110-121, (2017)
[2]
Adhikari M., Amgoth T., Srirama S.N., A survey on scheduling strategies for workflows in cloud environment and emerging trends, ACM Comput. Surv., 52, 4, pp. 681-68:36, (2019)
[3]
Al-Mahruqi A.A.H., Morison G., Stewart B.G., Vallavaraj A., Hybrid heuristic algorithm for better energy optimization and resource utilization in cloud computing, Wirel. Pers. Commun., 118, 1, pp. 43-73, (2021)
[4]
Armbrust M., Fox A., Griffith R., Joseph A.D., Katz R.H., Konwinski A., Lee G., Patterson D.A., Rabkin A., Stoica I., Zaharia M., A view of cloud computing, Commun. ACM, 53, 4, pp. 50-58, (2010)
[5]
Boas M.G.V., Santos H.G., de Campos Merschmann L.H., Berghe G.V., Optimal decision trees for the algorithm selection problem: integer programming based approaches, Int. Trans. Oper. Res., 28, 5, pp. 2759-2781, (2021)
[6]
Croce F.D., Scatamacchia R., The longest processing time rule for identical parallel machines revisited, J. Sched., 23, 2, pp. 163-176, (2020)
[7]
Czako Z., Sebestyen G., Hangan A., AutomaticaI - A hybrid approach for automatic artificial intelligence algorithm selection and hyperparameter tuning, Expert Syst. Appl., 182, (2021)
[8]
Deshpande N., Sharma N., Yu Q., Krutz D.E., R-CASS: using algorithm selection for self-adaptive service oriented systems, 2021 IEEE International Conference on Web Services, ICWS 2021, Chicago, IL, USA, September 5-10, 2021, pp. 61-72, (2021)
[9]
Ding D., Fan X., Zhao Y., Kang K., Yin Q., Zeng J., Q-learning based dynamic task scheduling for energy-efficient cloud computing, Future Gener. Comput. Syst., 108, pp. 361-371, (2020)
[10]
Dong T., Xue F., Xiao C., Li J., Task scheduling based on deep reinforcement learning in a cloud manufacturing environment, Concurr. Comput. Pract. Exp., 32, 11, (2020)