Irreducible graded bimodules over algebras and a Pierce decomposition of the Jacobson radical

被引:0
作者
de Franca, Antonio [1 ]
Sviridova, Irina [2 ]
机构
[1] Univ Fed Campina Grande, Dept Math, Ave Aprigio Veloso,785 Univertisitario, BR-58429970 Campina Grande, PB, Brazil
[2] Univ Brasilia, Dept Math, Brasilia, DF, Brazil
关键词
G-graded bimodule; G-irreducible bimodule; G-simple bimodule; Jacobson radical; Pierce decomposition; Specht's problem; weak G-artinian bimodule; weak G-noetherian bimodule; PI-ALGEBRAS; IDENTITIES;
D O I
10.1080/00927872.2024.2343774
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the ring radical theory can be approached via language of modules. In this work, we present some generalizations of classical results from module theory, in the two-sided and graded sense. Let G be a group, F an algebraically closed field with char(F)=0, A a finite dimensional G-graded associative F -algebra and M a G-graded unitary A -bimodule. We proved that if A=Mn(F sigma[H]) with an elementary-canonical G-grading, where H is a finite abelian subgroup of G and sigma is an element of Z2(H,F*) , then M being irreducible graded implies that there exists a nonzero homogeneous element w is an element of M satisfying M=Bw and Bw=wB . Another result we proved generalizes the last one: if G is abelian, A is simple graded and M is finitely generated, then there exist nonzero homogeneous elements w1,w2,& mldr;,wn is an element of M such that M=Aw1 circle plus Aw2 circle plus & ctdot;circle plus Awn , where wiA=Awi not equal 0 for all i=1,2,& mldr;,n , and each Awi is irreducible. The elements wi 's are associated with the irreducible characters of G. We also describe graded bimodules over graded semisimple algebras. And we finish by presenting a Pierce decomposition of the graded Jacobson radical of any finite dimensional F -algebra with a G-grading.
引用
收藏
页码:4226 / 4254
页数:29
相关论文
共 44 条
  • [1] Abakarov A. Sh., 1984, J SOVIET MATH, V27, P2831, DOI [10.1007/BF01410736, DOI 10.1007/BF01410736]
  • [2] POLYNOMIAL IDENTITIES WITH INVOLUTION, SUPERINVOLUTIONS AND THE GRASSMANN ENVELOPE
    Aljadeff, Eli
    Giambruno, Antonio
    Karasik, Yakov
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) : 1843 - 1857
  • [3] Representability and Specht problem for G-graded algebras
    Aljadeff, Eli
    Kanel-Belov, Alexei
    [J]. ADVANCES IN MATHEMATICS, 2010, 225 (05) : 2391 - 2428
  • [4] Amitsur S.A., 1954, AM J MATH, V76, P100
  • [5] Amitsur S. A., 1952, Amer. J. Math., V74, P774
  • [6] Andrunakievi V. A., 1964, DOKL AKAD NAUK SSSR, V5, P991
  • [7] Finite-dimensional simple graded algebras
    Bahturin, Yu. A.
    Zaicev, M. V.
    Sehgal, S. K.
    [J]. SBORNIK MATHEMATICS, 2008, 199 (7-8) : 965 - 983
  • [8] Belov-Kanel A., 2012, Serdica Math. J, V38, P313
  • [9] BIMODULES OVER A SOLVABLE ALGEBRAIC LIE-ALGEBRA
    BROWN, KA
    SMITH, SP
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1985, 36 (142) : 129 - 139
  • [10] THE G-GRADED IDENTITIES OF THE GRASSMANN ALGEBRA
    Centrone, Lucid
    [J]. ARCHIVUM MATHEMATICUM, 2016, 52 (03): : 141 - 158