Short-Wave Infrared Colloidal QD Photodetector with Nanosecond Response Times Enabled by Ultrathin Absorber Layers

被引:24
作者
Deng, Yu-Hao [1 ,2 ]
Pang, Chao [2 ,3 ]
Kheradmand, Ezat [1 ,2 ]
Leemans, Jari [1 ,2 ]
Bai, Jing [1 ,2 ]
Minjauw, Matthias [4 ]
Liu, Jiayi [2 ,5 ]
Molkens, Korneel [1 ,2 ,3 ]
Beeckman, Jeroen [2 ,5 ]
Detavernier, Christophe [4 ]
Geiregat, Pieter [1 ,2 ]
Van Thourhout, Dries [2 ,3 ]
Hens, Zeger [1 ,2 ]
机构
[1] Univ Ghent, Phys & Chem Nanostruct Grp, B-9000 Ghent, Belgium
[2] Univ Ghent, Ctr Nano & Biophoton, B-9052 Ghent, Belgium
[3] Univ Ghent, Photon Res Grp, B-9052 Ghent, Belgium
[4] Univ Ghent, Dept Solid State Sci, B-9000 Ghent, Belgium
[5] Univ Ghent, Dept Elect & Informat Syst, B-9052 Ghent, Belgium
基金
欧洲研究理事会;
关键词
colloidal quantum dots; photodetector; short-wave infrared; ultrafast;
D O I
10.1002/adma.202402002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ultrafast short-wavelength infrared (SWIR) photodetection is of great interest for emerging automated vision and spatial mapping technologies. Colloidal quantum dots (QDs) stand out for SWIR photodetection compared to epitaxial (In,Ga)As or (Hg,Cd)Te semiconductors by their combining a size-tunable bandgap and a suitability for cost-effective, solution-based processing. However, achieving ultrafast, nanosecond-level response time has remained an outstanding challenge for QD-based SWIR photodiodes (QDPDs). Here, record 4 ns response time in PbS-based QDPDs that operate at SWIR wavelengths is reported, a result reaching the requirement of SWIR light detection and ranging based on colloidal QDs. These ultrafast QDPDs combine a thin active layer to reduce the carrier transport time and a small area to inhibit slow capacitive discharging. By implementing a concentration gradient ligand exchange method, high-quality p-n junctions are fabricated in these ultrathin QDPDs. Moreover, these ultrathin QDPDs attain an external quantum efficiency of 42% at 1330 nm, due to a 2.5-fold enhanced light absorption through the formation of a Fabry-Perot cavity within the QDPD and the highly efficient extraction (98%) of photogenerated charge carriers. Based on these results, it is estimated that a further increase of the charge-carrier mobility can lead to PbS QDPDs with sub-nanosecond response time. The record 4 ns response time in colloidal quantum dot photodiodes (QDPDs) that operate at short-wavelength infrared (SWIR) wavelengths is reported, the first result reaching the requirement of SWIR light detection and ranging based on colloidal QDs. These ultrafast QDPDs combine a thin active layer to reduce the carrier transport time and a small area to inhibit slow capacitive discharging. image
引用
收藏
页数:8
相关论文
共 35 条
[1]  
Atan O., 2023, ADV MATER, V35
[2]   Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells [J].
Bederak, Dmytro ;
Balazs, Daniel M. ;
Sukharevska, Nataliia V. ;
Shulga, Artem G. ;
Abdu-Aguye, Mustapha ;
Dirin, Dmitry N. ;
Kovalenko, Maksym V. ;
Loi, Maria A. .
ACS APPLIED NANO MATERIALS, 2018, 1 (12) :6882-6889
[3]   Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells [J].
Beek, WJE ;
Wienk, MM ;
Kemerink, M ;
Yang, XN ;
Janssen, RAJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (19) :9505-9516
[4]   A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells [J].
Biondi, Margherita ;
Choi, Min-Jae ;
Ouellette, Olivier ;
Baek, Se-Woong ;
Todorovic, Petar ;
Sun, Bin ;
Lee, Seungjin ;
Wei, Mingyang ;
Li, Peicheng ;
Kirmani, Ahmad R. ;
Sagar, Laxmi K. ;
Richter, Lee J. ;
Hoogland, Sjoerd ;
Lu, Zheng-Hong ;
de Arquer, F. Pelayo ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2020, 32 (17)
[5]   Next-generation in vivo optical imaging with short-wave infrared quantum dots [J].
Bruns, Oliver T. ;
Bischof, Thomas S. ;
Harris, Daniel K. ;
Franke, Daniel ;
Shi, Yanxiang ;
Riedemann, Lars ;
Bartelt, Alexander ;
Jaworski, Frank B. ;
Carr, Jessica A. ;
Rowlands, Christopher J. ;
Wilson, Mark W. B. ;
Chen, Ou ;
Wei, He ;
Hwang, Gyu Weon ;
Montana, Daniel M. ;
Coropceanu, Igor ;
Achorn, Odin B. ;
Kloepper, Jonas ;
Heeren, Joerg ;
So, Peter T. C. ;
Fukumura, Dai ;
Jensen, Klavs F. ;
Jain, Rakesh K. ;
Bawendi, Moungi G. .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (04)
[6]   Solution-Processed InSb Quantum Dot Photodiodes for Short-Wave Infrared Sensing [J].
Chatterjee, Subhashri ;
Nemoto, Kazuhiro ;
Ghosh, Batu ;
Sun, Hong-Tao ;
Shirahata, Naoto .
ACS APPLIED NANO MATERIALS, 2023, 6 (17) :15540-15550
[7]   Flexible quantum dot light-emitting diodes for next-generation displays [J].
Choi, Moon Kee ;
Yang, Jiwoong ;
Hyeon, Taeghwan ;
Kim, Dae-Hyeong .
NPJ FLEXIBLE ELECTRONICS, 2018, 2 (01)
[8]   Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors [J].
Clifford, Jason P. ;
Konstantatos, Gerasimos ;
Johnston, Keith W. ;
Hoogland, Sjoerd ;
Levina, Larissa ;
Sargent, Edward H. .
NATURE NANOTECHNOLOGY, 2009, 4 (01) :40-44
[9]   Semiconductor quantum dots: Technological progress and future challenges [J].
de Arquer, F. Pelayo Garcia ;
Talapin, Dmitri, V ;
Klimov, Victor, I ;
Arakawa, Yasuhiko ;
Bayer, Manfred ;
Sargent, Edward H. .
SCIENCE, 2021, 373 (6555) :640-+
[10]   "Darker-than-Black" PbS Quantum Dots: Enhancing Optical Absorption of Colloidal Semiconductor Nanocrystals via Short Conjugated Ligands [J].
Giansante, Carlo ;
Infante, Ivan ;
Fabiano, Eduardo ;
Grisorio, Roberto ;
Suranna, Gian Paolo ;
Gigli, Giuseppe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (05) :1875-1886