Carbon and water footprint of battery-grade lithium from brine and spodumene: A simulation-based LCA

被引:14
作者
Mas-Fons, Aina [1 ]
Arduin, Rachel Horta [1 ]
Loubet, Philippe [1 ]
Pereira, Tina [2 ]
Parvez, Ashak Mahmud [2 ]
Sonnemann, Guido [1 ]
机构
[1] Univ Bordeaux, ISM, Bordeaux INP, CNRS,UMR 5255, F-33400 Talence, France
[2] Helmholtz Inst Freiberg Resource Technol HIF, Helmholtz Zentrum Dresden Rossendorf e V HZDR, Chemnitzer Str 40, D-09599 Freiberg, Germany
关键词
Lithium -ion batteries; HSC SIM; Life cycle inventory; Process simulation; Life cycle assessment; Lithium carbonate; LIFE-CYCLE ASSESSMENT; ENVIRONMENTAL-IMPACT; RECOVERY; AVAILABILITY; IMPROVEMENT; RESOURCES;
D O I
10.1016/j.jclepro.2024.142108
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Increasing demand for lithium driven by e -mobility spurs the expansion of lithium projects and exploration of lower -grade resources. This article combines process simulation (HSC Chemistry) and life cycle assessment tools to develop life cycle inventories considering declining ore grades scenarios for battery -grade Li2CO3 production from pivotal sources and regions (Salar de Atacama - brine and Greenbushes - spodumene). Depending on the ore grades, climate change results range from 5,0 to 25,0 kgCO2eq/kg Li2CO3 for brine and from 17,1 to 22,3 kgCO2eq/kg Li2CO3 for spodumene. Water consumption for brine varies from 0,2 to 7,7 m3/kg Li2CO3, depending on flow accounting, while for spodumene, it ranges from 0,2 to 0,5 m3/kg Li2CO3. The research shows that decreasing ore grade can lead to a fivefold increase in the carbon footprint for brine -based production and a 1.3 -fold increase for spodumene. This underscores the importance of decarbonizing energy provision for lithium production to guarantee a sustainable battery supply chain. This research offers insights into using process simulation to enhance existing LCA studies in the raw materials industry and further develop inventory datasets, considering variations such as deposit ore grades.
引用
收藏
页数:12
相关论文
共 70 条
[1]   Regionalized Life Cycle Inventories of Global Sulfidic Copper Tailings [J].
Adrianto, Lugas Raka ;
Pfister, Stephan ;
Hellweg, Stefanie .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (07) :4553-4564
[2]   Simulation-based life cycle assessment of secondary materials from recycling of lithium-ion batteries [J].
Ali, Abdur-Rahman ;
Bartie, Neill ;
Husmann, Jana ;
Cerdas, Felipe ;
Schroder, Daniel ;
Herrmann, Christoph .
RESOURCES CONSERVATION AND RECYCLING, 2024, 202
[3]   Understanding the future of lithium: Part 1, resource model [J].
Ambrose, Hanjiro ;
Kendall, Alissa .
JOURNAL OF INDUSTRIAL ECOLOGY, 2020, 24 (01) :80-89
[4]   Recovery of lithium from Uyuni salar brine [J].
An, Jeon Woong ;
Kang, Dong Jun ;
Khuyen Thi Tran ;
Kim, Myong Jun ;
Lim, Tuti ;
Tam Tran .
HYDROMETALLURGY, 2012, 117 :64-70
[5]  
[Anonymous], HSC Chemistry
[6]  
[Anonymous], 2014, Roskill Inf. Serv., V457
[7]  
Aral H., 2011, ENCY ENV HLTH, P116, DOI [10.1016/B978-0-444-52272-6.00531-6, DOI 10.1016/B978-0-444-52272-6.00531-6]
[8]   A framework for assessing off-stream freshwater use in LCA [J].
Bayart, Jean-Baptiste ;
Bulle, Cecile ;
Deschenes, Louise ;
Margni, Manuele ;
Pfister, Stephan ;
Vince, Francois ;
Koehler, Annette .
INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2010, 15 (05) :439-453
[9]   LCA as a support to more sustainable tailings management: critical review, lessons learnt and potential way forward [J].
Beylot, Antoine ;
Bodenan, Francoise ;
Guezennec, Anne-Gwenaelle ;
Muller, Stephanie .
RESOURCES CONSERVATION AND RECYCLING, 2022, 183
[10]   Technological Improvement, Lithium Recovery Methods from Primary Resources [J].
Bishimbayeva, Gaukhar ;
Zhumabayeva, Dinara ;
Zhandayev, Nurlan ;
Nalibayeva, Arailym ;
Shestakov, Konstantin ;
Levanevsky, Igor ;
Zhanabayeva, Asem .
ORIENTAL JOURNAL OF CHEMISTRY, 2018, 34 (06) :2762-2769