Hardy-Sobolev equation with negative power and sign-changing nonlinearity on closed manifolds

被引:0
作者
Chen, Nanbo [1 ,2 ]
Liang, Honghong [1 ]
Huang, Zhihua [3 ]
Liu, Xiaochun [4 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Data Anal & Computat, Sch Math & Comp Sci, Guilin 541002, Peoples R China
[2] Ctr Appl Math Guangxi GUET, Guilin 541002, Peoples R China
[3] Guangdong Univ Educ, Dept Math, Guangzhou 510310, Peoples R China
[4] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-Sobolev equations; Nehari manifold; Compact Riemannian manifold; Singular nonlinearity; MULTIPLE POSITIVE SOLUTIONS; KIRCHHOFF TYPE PROBLEMS; SHARP CONSTANTS; INEQUALITIES; SINGULARITY; EXISTENCE;
D O I
10.1007/s11868-024-00630-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of Hardy-Sobolev equations containing both sign-changing and negative power terms on closed Riemannian manifolds. With the help of a modified Nehari manifold method and some variational techniques, the existence and multiplicity of positive weak solutions are established, along with blow-up behavior analysis.
引用
收藏
页数:27
相关论文
共 34 条
[1]  
Aberqi A, 2023, J PSEUDO-DIFFER OPER, V14, DOI 10.1007/s11868-023-00535-5
[2]  
Aubin T., 1976, J. Differ. Geom., V11, P573
[3]   Semilinear elliptic equations with singular nonlinearities [J].
Boccardo, Lucio ;
Orsina, Luigi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :363-380
[4]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[5]  
2-I
[6]   On thep-Laplacian Lichnerowicz equation on compact Riemannian manifolds [J].
Chen, Nanbo ;
Liu, Xiaochun .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (10) :2249-2274
[7]   Hardy-Sobolev equation on compact Riemannian manifolds involving p-Laplacian [J].
Chen, Nanbo ;
Liu, Xiaochun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
[8]   ON A SINGULAR NONLINEAR DIRICHLET PROBLEM [J].
COCLITE, MM ;
PALMIERI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (10) :1315-1327
[9]  
Crandall MG., 1977, Comm. Partial Differ. Equ, V2, P193
[10]   Positive solutions for the p-Laplacian: application of the fibrering method [J].
Drabek, P ;
Pohozaev, SI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :703-726