Experimental Investigation of TR-UHPC Composites and Flexural Behavior of TR-UHPC Composite Slab

被引:1
|
作者
Fu, Jiuzhi [1 ]
Zhang, Yang [1 ]
Qin, Yanyue [1 ,2 ]
机构
[1] Hunan Univ, Coll Civil Engn, Changsha 410082, Peoples R China
[2] Univ Tokyo, Dept Civil Engn, Tokyo 1138656, Japan
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 08期
关键词
Ultra-High-Performance Concrete; fiber textile; pedestrian walkway slab; tensile performance; flexural behavior; RC BEAMS;
D O I
10.3390/app14083161
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this investigation, the effects of different fabrics with 0.20% carbon fiber textile (CFT), 0.21% glass fiber textile (GFT), and 0.25% basalt fiber textile (BFT) on the properties of TR-UHPC were investigated by axial tensile tests. A bending test of the BFT-UHPC pavement slab was carried out. In terms of axial tensile performance, the fiber textiles ranked in the following sequence: CFT, BFT, and GFT. Additionally, the corresponding increases in the initial cracking strength and ultimate tensile strength were 18.0% and 21.9% for the CFT, 12.0% and 16.0% for the BFT, and only 9.1% and 8.0% for the GFT, respectively. Increasing the textile reinforcement ratio of the BFT from 0.25% to 0.50% improved the cracking stress and peak stress of the specimen by 12.0% and 15.9%, respectively. Moreover, the ultimate strain of the 0.50%-BFT reinforcing case was 1.4 times that of the 0.25%-BFT reinforcing case and 2.6 times that of the unreinforced specimen in terms of ductility. The results of the stacking test on the BFT reinforced UHPC pedestrian slab indicate that the mid-span deflection of the test slab under normal use load is 0.775 mm, which is only 19.8% of the deflection limit. Additionally, the test slab remained in the elastic stage without any cracking. The BFT effectively enhanced the toughness of the UHPC thin slab after cracking. It is expected to be applied as a novel structure to bridge pedestrian slabs, bridge decks, and other thin UHPC members, thereby improving the durability and mechanical properties of bridge structures.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Experimental Investigation of Flexural Behavior of Steel-UHPC Composite Beam with Waffle-Slab System
    Zhu, Jinsong
    Guo, Xiaoyu
    Kang, Jingfu
    Duan, Menghao
    Wang, Yongguang
    JOURNAL OF BRIDGE ENGINEERING, 2021, 26 (04)
  • [2] Flexural behavior of a novel demountable steel-UHPC composite slab
    Gu J.
    Wang J.
    Lu W.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2024, 56 (01): : 84 - 92
  • [3] Experimental Study on Flexural Behavior of Prefabricated UHPC-NC Slab with Composite Wet Joint
    Zhang Y.
    Zhang Y.
    Qiu J.
    Huang J.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (11): : 62 - 71
  • [4] Experimental study on flexural behavior of UHPC-NC composite beams
    Liu, C.
    Sun, Q. X.
    BRIDGE MAINTENANCE, SAFETY, MANAGEMENT, LIFE-CYCLE SUSTAINABILITY AND INNOVATIONS, 2021, : 3905 - 3911
  • [5] Experimental study on flexural behavior of steel-UHPC composite slabs
    Li, Wenguang
    Shao, Xudong
    Fang, Heng
    Zhang, Zhe
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2015, 48 (11): : 93 - 102
  • [6] Experimental, analytical, and numerical investigation on flexural behavior of the gradient UHPC-NC composite beams
    Xing, Lili
    Sun, Shengjiang
    Mei, Kuihua
    Li, Bo
    Yang, Zhenhong
    Guo, Yiping
    STRUCTURES, 2024, 70
  • [7] Experimental Study on the Flexural Behavior of Steel-UHPC Composite Beams with Waffle Slab in Negative Moment Regions
    Zhu J.-S.
    Wang X.-C.
    Ding J.-N.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2021, 34 (08): : 234 - 245
  • [8] Experimental Investigation on Flexural Capacity of Steel-UHPC Continuous Composite Girder
    Wang H.-L.
    Sun T.
    Liu X.-Y.
    Tang C.
    Wang J.-J.
    Chen A.-J.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2021, 34 (08): : 218 - 233
  • [9] Experimental and numerical investigation on flexural behavior of steel-UHPC composite slabs with PBL shear connectors
    Li, Chuanxi
    Shi, Yu
    Xiao, Heyu
    Tan, Li
    He, Longfei
    JOURNAL OF BUILDING ENGINEERING, 2024, 95
  • [10] Flexural behavior of UHPC-RC composite beam
    Wu, Xiangguo
    Lin, Yang
    STEEL AND COMPOSITE STRUCTURES, 2016, 22 (02): : 387 - 398