Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data

被引:4
作者
Wei, Xiaoli [1 ,2 ]
Cui, Qian [5 ]
Ma, Leiming [1 ]
Zhang, Feng [2 ,3 ]
Li, Wenwen
Liu, Peng [4 ]
机构
[1] Shanghai Meteorol Serv, Shanghai 200030, Peoples R China
[2] Shanghai Qi Zhi Inst, Shanghai 200232, Peoples R China
[3] Fudan Univ, Institute Atmospher Sci, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Atmospher Sci, Nanjing 210044, Peoples R China
[5] Wuhan Meteorol Bur, Wuhan 430000, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL-PROPERTIES; BROWN CARBON; ABSORPTION; EMISSIONS; CHINA; SCATTERING; RETRIEVAL; FOREST; FIRES; URBAN;
D O I
10.5194/acp-24-5025-2024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The properties of aerosols are highly uncertain owing to the complex changes in their composition in different regions. The radiative properties of different aerosol types differ considerably and are vital for studying aerosol regional and/or global climate effects. Traditional aerosol-type identification algorithms, generally based on cluster or empirical analysis methods, are often inaccurate and time-consuming. In response, our study aimed to develop a new aerosol-type classification model using an innovative hybrid algorithm to improve the precision and efficiency of aerosol-type identification. This novel algorithm incorporates an optical database, constructed using the Mie scattering model, and employs a random forest algorithm to classify different aerosol types based on the optical data from the database. The complex refractive index was used as a baseline to assess the performance of our hybrid algorithm against the traditional Gaussian kernel density clustering method for aerosol-type identification. The hybrid algorithm demonstrated impressive consistency rates of 90 %, 85 %, 84 %, 84 %, and 100 % for dust, mixed-coarse (mixed, course-mode aerosol), mixed-fine (mixed, fine-mode aerosol), urban/industrial, and biomass burning aerosols, respectively. Moreover, it achieved remarkable precision, with evaluation metric indexes for micro-precision, micro-recall, micro-F1-score, and accuracy of 95 %, 89 %, 91 %, and 89 %, respectively. Lastly, a global map of aerosol types was generated using the new hybrid algorithm to characterize aerosol types across the five continents. This study, utilizing a novel approach for the classification of aerosol, will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
引用
收藏
页码:5025 / 5045
页数:21
相关论文
共 59 条
[31]  
NASA: AERONET, 2020, NASA
[32]   A neural network aerosol-typing algorithm based on lidar data [J].
Nicolae, Doina ;
Vasilescu, Jeni ;
Talianu, Camelia ;
Binietoglou, Ioannis ;
Nicolae, Victor ;
Andrei, Simona ;
Antonescu, Bogdan .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (19) :14511-14537
[33]   Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements [J].
Omar, AH ;
Won, JG ;
Winker, DM ;
Yoon, SC ;
Dubovik, O ;
McCormick, MP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) :1-14
[34]   Effects of olive tree branches burning emissions on PM2.5 concentrations [J].
Papadakis, G. Z. ;
Megaritis, A. G. ;
Pandis, S. N. .
ATMOSPHERIC ENVIRONMENT, 2015, 112 :148-158
[35]   Seasonal heterogeneity in aerosol types over Dibrugarh-North-Eastern India [J].
Pathak, Binita ;
Bhuyan, Pradip Kumar ;
Gogoi, Mukunda ;
Bhuyan, Kalyan .
ATMOSPHERIC ENVIRONMENT, 2012, 47 :307-315
[36]   Identification of aerosol types over an urban site based on air-mass trajectory classification [J].
Pawar, G. V. ;
Devara, P. C. S. ;
Aher, G. R. .
ATMOSPHERIC RESEARCH, 2015, 164 :142-155
[37]  
Puxbaum H., 2007, J GEOPHYS RES, V112, DOI DOI 10.1029/2006JD008114
[38]   Extinction-related Angstrom exponent characterization of submicrometric volume fraction in atmospheric aerosol particles [J].
Quirantes, A. ;
Guerrero-Rascado, J. L. ;
Perez-Ramirez, D. ;
Foyo-Moreno, I. ;
Ortiz-Amezcua, P. ;
Benavent-Oltra, J. A. ;
Lyamani, H. ;
Titos, G. ;
Bravo-Aranda, J. A. ;
Cazorla, A. ;
Valenzuela, A. ;
Casquero-Vera, J. A. ;
Bedoya-Velasquez, A. E. ;
Alados-Arboledas, L. ;
Olmo, F. J. .
ATMOSPHERIC RESEARCH, 2019, 228 :270-280
[39]   Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze [J].
Ramanathan, V ;
Crutzen, PJ ;
Lelieveld, J ;
Mitra, AP ;
Althausen, D ;
Anderson, J ;
Andreae, MO ;
Cantrell, W ;
Cass, GR ;
Chung, CE ;
Clarke, AD ;
Coakley, JA ;
Collins, WD ;
Conant, WC ;
Dulac, F ;
Heintzenberg, J ;
Heymsfield, AJ ;
Holben, B ;
Howell, S ;
Hudson, J ;
Jayaraman, A ;
Kiehl, JT ;
Krishnamurti, TN ;
Lubin, D ;
McFarquhar, G ;
Novakov, T ;
Ogren, JA ;
Podgorny, IA ;
Prather, K ;
Priestley, K ;
Prospero, JM ;
Quinn, PK ;
Rajeev, K ;
Rasch, P ;
Rupert, S ;
Sadourny, R ;
Satheesh, SK ;
Shaw, GE ;
Sheridan, P ;
Valero, FPJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D22) :28371-28398
[40]   Radiative budget in the presence of multi-layered aerosol structures in the framework of AMMA SOP-0 [J].
Raut, J. -C. ;
Chazette, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (22) :6839-6864