Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data

被引:4
作者
Wei, Xiaoli [1 ,2 ]
Cui, Qian [5 ]
Ma, Leiming [1 ]
Zhang, Feng [2 ,3 ]
Li, Wenwen
Liu, Peng [4 ]
机构
[1] Shanghai Meteorol Serv, Shanghai 200030, Peoples R China
[2] Shanghai Qi Zhi Inst, Shanghai 200232, Peoples R China
[3] Fudan Univ, Institute Atmospher Sci, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Atmospher Sci, Nanjing 210044, Peoples R China
[5] Wuhan Meteorol Bur, Wuhan 430000, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL-PROPERTIES; BROWN CARBON; ABSORPTION; EMISSIONS; CHINA; SCATTERING; RETRIEVAL; FOREST; FIRES; URBAN;
D O I
10.5194/acp-24-5025-2024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The properties of aerosols are highly uncertain owing to the complex changes in their composition in different regions. The radiative properties of different aerosol types differ considerably and are vital for studying aerosol regional and/or global climate effects. Traditional aerosol-type identification algorithms, generally based on cluster or empirical analysis methods, are often inaccurate and time-consuming. In response, our study aimed to develop a new aerosol-type classification model using an innovative hybrid algorithm to improve the precision and efficiency of aerosol-type identification. This novel algorithm incorporates an optical database, constructed using the Mie scattering model, and employs a random forest algorithm to classify different aerosol types based on the optical data from the database. The complex refractive index was used as a baseline to assess the performance of our hybrid algorithm against the traditional Gaussian kernel density clustering method for aerosol-type identification. The hybrid algorithm demonstrated impressive consistency rates of 90 %, 85 %, 84 %, 84 %, and 100 % for dust, mixed-coarse (mixed, course-mode aerosol), mixed-fine (mixed, fine-mode aerosol), urban/industrial, and biomass burning aerosols, respectively. Moreover, it achieved remarkable precision, with evaluation metric indexes for micro-precision, micro-recall, micro-F1-score, and accuracy of 95 %, 89 %, 91 %, and 89 %, respectively. Lastly, a global map of aerosol types was generated using the new hybrid algorithm to characterize aerosol types across the five continents. This study, utilizing a novel approach for the classification of aerosol, will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
引用
收藏
页码:5025 / 5045
页数:21
相关论文
共 59 条
[1]   Solar absorption by elemental and brown carbon determined from spectral observations [J].
Bahadur, Ranjit ;
Praveen, Puppala S. ;
Xu, Yangyang ;
Ramanathan, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (43) :17366-17371
[2]   Development and validation of a CCD-laser aerosol detective system for measuring the ambient aerosol phase function [J].
Bian, Yuxuan ;
Zhao, Chunsheng ;
Xu, Wanyun ;
Zhao, Gang ;
Tao, Jiangchuan ;
Kuang, Ye .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (06) :2313-2322
[3]   Multi year sun-photometer measurements for aerosol characterization in a Central Mediterranean site [J].
Boselli, A. ;
Caggiano, R. ;
Cornacchia, C. ;
Madonna, F. ;
Mona, L. ;
Macchiato, M. ;
Pappalardo, G. ;
Trippetta, S. .
ATMOSPHERIC RESEARCH, 2012, 104 :98-110
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China [J].
Che, Huizheng ;
Qi, Bing ;
Zhao, Hujia ;
Xia, Xiangao ;
Eck, Thomas F. ;
Goloub, Philippe ;
Dubovik, Oleg ;
Estelles, Victor ;
Cuevas-Agullo, Emilio ;
Blarel, Luc ;
Wu, Yunfei ;
Zhu, Jun ;
Du, Rongguang ;
Wang, Yaqiang ;
Wang, Hong ;
Gui, Ke ;
Yu, Jie ;
Zheng, Yu ;
Sun, Tianze ;
Chen, Quanliang ;
Shi, Guangyu ;
Zhang, Xiaoye .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (01) :405-425
[6]   Improving Spatial Coverage of Satellite Aerosol Classification Using a Random Forest Model [J].
Choi, Wonei ;
Lee, Hanlim ;
Kim, Daewon ;
Kim, Serin .
REMOTE SENSING, 2021, 13 (07)
[7]   A First Approach to Aerosol Classification Using Space-Borne Measurement Data: Machine Learning-Based Algorithm and Evaluation [J].
Choi, Wonei ;
Lee, Hanlim ;
Park, Jeonghyeon .
REMOTE SENSING, 2021, 13 (04) :1-21
[8]   A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements [J].
Dubovik, O ;
King, MD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D16) :20673-20696
[9]  
Dubovik O, 2002, J ATMOS SCI, V59, P590, DOI 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO
[10]  
2