Ring current electron precipitation during the 17 March 2013 geomagnetic storm: Underlying mechanisms and their effect on the atmosphere

被引:5
作者
Grishina, Alina S. [1 ,2 ]
Shprits, Yuri Y. [1 ,2 ,3 ]
Drozdov, Alexander Y. [3 ]
Sinnhuber, Miriam [4 ]
Haenel, Florian [4 ]
Wang, Dedong [1 ]
Szabo-Roberts, Matyas [5 ]
Wissing, Jan Maik [5 ]
Bender, Stefan [6 ]
机构
[1] GFZ German Res Ctr Geosci, Dept Space Phys & Space Weather, Albert Einstein Str 42-46, D-14473 Potsdam, Germany
[2] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, 595 Charles E Young Dr E, Los Angeles, CA 90095 USA
[4] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Atmospher Trace Gases & Remote Sensing IMK ASF, Hermann von Helmholtz Pl 1, D-76344 Karlsruhe, Germany
[5] Inst Solar Terr Phys, DLR German Aerosp Ctr Neustrelitz, Kalkhorstweg 53, D-17235 Neustrelitz, Germany
[6] CSIC, Inst Astrofis Andalucia, Glorieta Astron S-N, Granada 18008, Spain
基金
欧盟地平线“2020”;
关键词
Electron precipitation; Ring current; Ionization rates; Satellite observations; Geomagnetic storms; VAN ALLEN PROBES; RADIATION BELT ELECTRONS; CHORUS WAVE MODEL; RELATIVISTIC ELECTRONS; ULTRARELATIVISTIC ELECTRONS; ENERGETIC PARTICLE; FAR-ULTRAVIOLET; PROTON; FLUXES; SIMULATIONS;
D O I
10.1016/j.asr.2024.03.010
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Electron and ion fluxes at energies of -10 keV-1 MeV can change by orders of magnitude during geomagnetically active periods. This can lead to intensification of particle precipitation into the Earth's atmosphere. The process further affects atmospheric chemistry, which may impact weather and climate on the Earth's surface. In this study, we concentrate on ring current electrons, and investigate precipitation mechanisms using a numerical model based on the Fokker -Planck equation. We focus on a study of the main precipitation mechanisms, and their connection with atmospheric parameters. We investigate the 17 March 2013 storm using the convection-diffusion 4 -Dimensional Versatile Electron Radiation Belt (VERB -4D) code, that allows us to quantify the impact of the storm on the electron ring current, and the resulting electron precipitation. We validate our results against observations from the Polar Operational Environmental Satellites (POES) mission, the low Earth orbiting meteorological satellites National Oceanic and Atmospheric Administration (NOAA-15,-16,-17,-18,-19), and Meteorological Operational Satellite MetOp-02, as well as the Van Allen Probes, and produce a data set of precipitating fluxes that covers an energy range from 10 keV to 1 MeV. We calculate the altitude -dependent atmospheric ionization rates, a prerequisite for atmospheric models to estimate effects of geomagnetically active periods on chemical and physical variability of the atmosphere at high latitudes. Atmospheric ionization rates are validated against Atmospheric Ionization during Substorm (AIMOS 2.1-Aisstorm) and Special Sensor Ultraviolet Spectrographic Imagers (SSUSI) values, and show good agreement at high geomagnetic latitudes during the storm time. (c) 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:5064 / 5087
页数:24
相关论文
共 141 条
[1]   Synthetic Empirical Chorus Wave Model From Combined Van Allen Probes and Cluster Statistics [J].
Agapitov, O. V. ;
Mourenas, D. ;
Artemyev, A. V. ;
Mozer, F. S. ;
Hospodarsky, G. ;
Bonnell, J. ;
Krasnoselskikh, V. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (01) :297-314
[2]   The ELFIN Mission [J].
Angelopoulos, V ;
Tsai, E. ;
Bingley, L. ;
Shaffer, C. ;
Turner, D. L. ;
Runov, A. ;
Li, W. ;
Liu, J. ;
Artemyev, A., V ;
Zhang, X-J ;
Strangeway, R. J. ;
Wirz, R. E. ;
Shprits, Y. Y. ;
Sergeev, V. A. ;
Caron, R. P. ;
Chung, M. ;
Cruce, P. ;
Greer, W. ;
Grimes, E. ;
Hector, K. ;
Lawson, M. J. ;
Leneman, D. ;
Masongsong, E., V ;
Russell, C. L. ;
Wilkins, C. ;
Hinkley, D. ;
Blake, J. B. ;
Adair, N. ;
Allen, M. ;
Anderson, M. ;
Arreola-Zamora, M. ;
Artinger, J. ;
Asher, J. ;
Branchevsky, D. ;
Capitelli, M. R. ;
Castro, R. ;
Chao, G. ;
Chung, N. ;
Cliffe, M. ;
Colton, K. ;
Costello, C. ;
Depe, D. ;
Domae, B. W. ;
Eldin, S. ;
Fitzgibbon, L. ;
Flemming, A. ;
Fox, I ;
Frederick, D. M. ;
Gilbert, A. ;
Gildemeister, A. .
SPACE SCIENCE REVIEWS, 2020, 216 (05)
[3]  
[Anonymous], 2018, World Meteorological Organization Report 1212
[4]   Transport and Loss of Ring Current Electrons Inside Geosynchronous Orbit During the 17 March 2013 Storm [J].
Aseev, N. A. ;
Shprits, Y. Y. ;
Wang, D. ;
Wygant, J. ;
Drozdov, A. Y. ;
Kellerman, A. C. ;
Reeves, G. D. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (02) :915-933
[5]   Numerical applications of the advective-diffusive codes for the inner magnetosphere [J].
Aseev, N. A. ;
Shprits, Y. Y. ;
Drozdov, A. Y. ;
Kellerman, A. C. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2016, 14 (11) :993-1010
[6]   Correction of detector noise and recalibration of NOAA/MEPED energetic proton fluxes [J].
Asikainen, T. ;
Mursula, K. ;
Maliniemi, V. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
[7]   Recalibration of the long-term NOAA/MEPED energetic proton measurements [J].
Asikainen, T. ;
Mursula, K. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2011, 73 (2-3) :335-347
[8]   The northern auroral region as observed in nitric oxide [J].
Barth, CA ;
Baker, DN ;
Mankoff, KD ;
Bailey, SM .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (08) :1463-1466
[9]   Temporal Characteristics of Energetic Magnetospheric Electron Precipitation as Observed During Long-Term Balloon Observations [J].
Bazilevskaya, G. A. ;
Kalinin, M. S. ;
Krainev, M. B. ;
Makhmutov, V. S. ;
Stozhkov, Y. I. ;
Svirzhevskaya, A. K. ;
Svirzhevsky, N. S. ;
Gvozdevsky, B. B. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (11)
[10]  
Bender Stefan, 2023, Zenodo, DOI 10.5281/ZENODO.8334549