Improved high-temperature creep properties of heat-resistant Al-Mg-Zn-Cu-Ni quinary alloy by adding a trace amount of Ti

被引:0
作者
Kondo M. [1 ]
Suzuki T. [1 ]
Li R. [2 ]
Takata N. [2 ]
机构
[1] Toyota Industries Corporation, 8, Chaya, Kyowa-cho, Aichi, Obu-shi
[2] Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Aichi, Nagoya-shi
来源
Keikinzoku/Journal of Japan Institute of Light Metals | 2023年 / 73卷 / 06期
关键词
aluminum alloys; creep property; intermetallics; microstructure; precipitation;
D O I
10.2464/jilm.73.260
中图分类号
学科分类号
摘要
The present study investigated the effect of trace titanium (Ti) addition on high-temperature creep properties of a heat-resistant quinary aluminum (Al) alloy, with a composition of Al-5Mg-3.5Zn-2Cu-2Ni (mol%). Both the quinary alloy and Ti-added alloy were solution-treated at 480°C and then aged at 200°C for 10 hours. The creep tests were conducted at 200°C under 105 MPa. The addition of trace Ti element reduced the minimum creep rate and delayed the onset of the tertiary creep stage (creep acceleration), resulting in the extended creep rupture life of the Al-5Mg-3.5Zn-2Cu-2Ni quinary alloy. The creep rupture life of the Ti-added alloy was higher than that of the A7075 alloy but lower than that of the A2618 alloy, whereas the initial creep rate (up to 0.2% in strain) of the Ti-added quinary alloy was lower than that of the A2618 alloy. The superior creep properties were presumably due to the enhanced stability of the fine precipitation morphologies of the T-Al6Mg11Zn11 phase by solute Ti inside the α-Al matrix. © 2023 The Japan Institute of Light Metals.
引用
收藏
页码:260 / 265
页数:5
相关论文
共 21 条
[1]  
Microstructures and properties of aluminum (アルミニウムの組織と性質), Japan Inst. Light Metals, pp. 296-530, (1991)
[2]  
Petschke D., Lotter F., Staab T. E., Materialia, 6, (2019)
[3]  
Takata N., Ishihara M., Okano T., Kobashi M., Proc. 132 Conf. Japan Inst. Light Metals, pp. 203-204, (2017)
[4]  
Yu K., Li W., Li S., Zhao J., Mater. Sci. Eng., A, 368, pp. 88-93, (2004)
[5]  
Bergman G., Waugh J. L. T., Pauling L., Acta Crystal, 10, pp. 254-259, (1957)
[6]  
Sun W., Lincoln F. J., Sugiyama K., Hiraga K., Mater. Sci. Eng. A, 294-296, pp. 327-330, (2000)
[7]  
Takata N., Ishihara M., Suzuki A., Kobashi M., Mater. Sci. Eng. A, 739, pp. 62-70, (2019)
[8]  
Takata N., Takagi R., Li R., Ishii H., Suzuki A., Kobashi M., Intermetallics, 139, (2021)
[9]  
Takata N., Suzuki A., Kobashi M., Materia Japan, 61, pp. 195-201, (2022)
[10]  
Ishii H., Takagi R., Takata N., Suzuki A., Kobashi M., J. Japan Inst. Light Metals, 71, pp. 275-282, (2021)