VECTORIZATION IN NONCONVEX SET OPTIMIZATION

被引:0
|
作者
Jahn J. [1 ]
机构
[1] Department Mathematik, Universität Erlangen-Nürnberg, Cauerstr. 11, Erlangen
来源
Journal of Applied and Numerical Optimization | 2022年 / 4卷 / 01期
关键词
Approximation; Optimality conditions; Set optimization; Vectorization;
D O I
10.23952/jano.4.2022.1.03
中图分类号
学科分类号
摘要
A new vectorization approach is presented for nonconvex set optimization problems with the set less order relation. This technique uses certain approximation problems with suitable parametric norms. The convexity of the sets is not required but one needs a strict lower and upper bound for all occuring sets. Karush-Kuhn-Tucker conditions are derived as necessary optimality conditions for set optimization problems in finite dimensional Euclidean spaces with the natural order cone. A multiplier-free necessary optimality condition is given as well. ©2022 Journal of Applied and Numerical Optimization
引用
收藏
页码:19 / 36
页数:17
相关论文
共 50 条
  • [1] A VECTORIZATION SCHEME FOR NONCONVEX SET OPTIMIZATION PROBLEMS
    Eichfelder, Gabriele
    Quintana, Ernest
    Rocktaschel, Stefan
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 1184 - 1209
  • [2] A vectorization for nonconvex set-valued optimization
    Karaman, Emrah
    Atasever Guvenc, Ilknur
    Soyertem, Mustafa
    Tozkan, Didem
    Kucuk, Mahide
    Kucuk, Yalcin
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (04) : 1815 - 1832
  • [3] Vectorization in Set Optimization
    Jahn, Johannes
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (03) : 783 - 795
  • [4] Vectorization in Set Optimization
    Johannes Jahn
    Journal of Optimization Theory and Applications, 2015, 167 : 783 - 795
  • [5] Characterizations of the Set Less Order Relation in Nonconvex Set Optimization
    Jahn, Johannes
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 193 (1-3) : 523 - 544
  • [6] Characterizations of the Set Less Order Relation in Nonconvex Set Optimization
    Johannes Jahn
    Journal of Optimization Theory and Applications, 2022, 193 : 523 - 544
  • [7] Nonconvex scalarization in set optimization with set-valued maps
    Hernandez, E.
    Rodriguez-Marin, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 1 - 18
  • [8] Nonconvex vector optimization of set-valued mappings
    Li, SJ
    Yang, XQ
    Chen, GY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 283 (02) : 337 - 350
  • [9] Gradient set splitting in nonconvex nonsmooth numerical optimization
    Gaudioso, Manlio
    Gorgone, Enrico
    OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (01): : 59 - 74
  • [10] Set contraction algorithm for computing Pareto set in nonconvex nonsmooth multiobjective optimization
    Galperin, EA
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (7-8) : 847 - 859