Deep Learning Method for Real-Time Fire Detection System for Urban Fire Monitoring and Control

被引:0
作者
Yang, Wenyang [1 ]
Wu, Yesen [1 ]
Chow, Steven Kwok Keung [2 ]
机构
[1] Xian Shiyou Univ, Sch Comp, Xian 710065, Peoples R China
[2] South Australian Hlth & Med Res Inst, Clin & Res Imaging Ctr, Adelaide, SA 5000, Australia
关键词
Fire detection; YOLOv5; network; Squeeze-and-excitation module; R-CNN;
D O I
10.1007/s44196-024-00592-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
During urban fire incidents, real-time videos and images are vital for emergency responders and decision-makers, facilitating efficient decision-making and resource allocation in smart city fire monitoring systems. However, real-time videos and images require simple and embeddable models in small computer systems with highly accurate fire detection ratios. YOLOv5s has a relatively small model size and fast processing time with limited accuracy. The aim of this study is to propose a method that employs a YOLOv5s network with a squeeze-and-excitation module for image filtering and classification to meet the urgent need for rapid and accurate real-time screening of irrelevant data. In this study, over 3000 internet images were used for crawling and annotating to construct a dataset. Furthermore, the YOLOv5, YOLOv5x and YOLOv5s models were developed to train and test the dataset. Comparative analysis revealed that the proposed YOLOv5s model achieved 98.2% accuracy, 92.5% recall, and 95.4% average accuracy, with a remarkable processing speed of 0.009 s per image and 0.19 s for a 35 frames-per-second video. This surpasses the performance of other models, demonstrating the efficacy of the proposed YOLOv5s for real-time screening and classification in smart city fire monitoring systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A real-time forest fire and smoke detection system using deep learning
    Mohammed, Raghad K.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2053 - 2063
  • [2] A real-time solar powered fire detection system
    Gandhar, Shashi
    Sharma, Kirti
    Verma, Nakul
    Goel, Divyam
    Shubham, Yuvraj
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (01) : 85 - 92
  • [3] Computer vision based real-time fire detection method
    School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
    J. Inf. Comput. Sci., 2 (533-545): : 533 - 545
  • [4] A real-time deep learning forest fire monitoring algorithm based on an improved Pruned + KD model
    Shengying Wang
    Jing Zhao
    Na Ta
    Xiaoye Zhao
    Mingxia Xiao
    Haicheng Wei
    Journal of Real-Time Image Processing, 2021, 18 : 2319 - 2329
  • [5] A New Real-Time Fire Detection Method Based On Infrared Image
    Qin, Chongshuang
    Zhang, Minglun
    He, Wen
    Guan, Chuanliang
    Sun, Wenfei
    Zhou, Hongyu
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 476 - 479
  • [6] Evaluating Segmentation-Based Deep Learning Models for Real-Time Electric Vehicle Fire Detection
    Kwon, Heejun
    Choi, Sugi
    Woo, Wonmyung
    Jung, Haiyoung
    FIRE-SWITZERLAND, 2025, 8 (02):
  • [7] ONFIRE Contest 2023: Real-Time Fire Detection on the Edge
    Gragnaniello, Diego
    Greco, Antonio
    Sansone, Carlo
    Vento, Bruno
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT I, 2024, 14365 : 273 - 281
  • [8] A Real-time Fire Detection and Notification System Based on Computer Vision
    Bayoumi, Sahar
    AlSobky, Elham
    Almohsin, Moneerah
    Altwaim, Manahel
    Alkaldi, Monira
    Alkahtani, Munera
    2013 INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS), 2013,
  • [9] Real Time Monitoring of Wireless Fire Detection Node
    Vijayalakshmi, S. R.
    Muruganand, S.
    INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING, SCIENCE AND TECHNOLOGY (ICETEST - 2015), 2016, 24 : 1113 - 1119
  • [10] A real-time deep learning forest fire monitoring algorithm based on an improved Pruned plus KD model
    Wang, Shengying
    Zhao, Jing
    Ta, Na
    Zhao, Xiaoye
    Xiao, Mingxia
    Wei, Haicheng
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2021, 18 (06) : 2319 - 2329