FMPNet: a fuzzy-embedded multi-scale prototype network for sea-land segmentation of remote sensing images

被引:1
作者
Wei, Guangyi [1 ]
Xu, Jindong [1 ]
Chong, Qianpeng [1 ]
Huang, Jianjun [1 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy method; multi-scale prototype; remote sensing images; sea land segmentation;
D O I
10.1080/22797254.2024.2343531
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Sea-Land Segmentation (SLS) of remote sensing images is a meaningful task in the remote sensing and computer vision community. Some tricky situations, such as intraclass heterogeneity due to imaging constraints, inherent interclass similarity of sea-land regions and uncertain sea-land boundaries, still are and continues to be the significant challenges in SLS. In this paper, a fuzzy-embedded multi-scale prototype network, named FMPNet, is proposed to target the above challenges of SLS task. We design a dual-branch joint attention feature extraction module (DAFM) for effective feature extraction. Memory bank (MB) is designed to collect multi-scale prototypes, aiming to obtain discriminative feature representations and guide feature selection. In addition, fuzzy connection (FC) unit is embedded in the network structure to mitigate the uncertain sea-land boundaries through 2D Gaussian fuzzy method. Extensive experimental results on a publicly SLS dataset and real region images captured by the Gaofen-1 satellite demonstrate the superior performance of the proposed FMPNet over the other state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
[1]   Automatic coastline extraction through enhanced sea-land segmentation by modifying Standard U-Net [J].
Aghdami-Nia, Mohammad ;
Shah-Hosseini, Reza ;
Rostami, Amirhossein ;
Homayouni, Saeid .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 109
[2]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Land-Sea Interactions and Ecosystem Services: Research Gaps and Future Challenges [J].
Barcelo, Matias ;
Vargas, Cristian A. ;
Gelcich, Stefan .
SUSTAINABILITY, 2023, 15 (10)
[5]  
Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]  
Chen Xiang, 2014, Journal of Data Acquisition & Processing, V29, P603
[9]   SeNet: Structured Edge Network for Sea-Land Segmentation [J].
Cheng, Dongcai ;
Meng, Gaofeng ;
Cheng, Guangliang ;
Pan, Chunhong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (02) :247-251
[10]   A multiscale fuzzy dual-domain attention network for urban remote sensing image segmentation [J].
Chong, Qianpeng ;
Xu, Jindong ;
Jia, Fei ;
Liu, Zhaowei ;
Yan, Weiqing ;
Wang, Xuan ;
Song, Yongchao .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (14) :5480-5501