Active viscoelastic models for cell and tissue mechanics

被引:4
作者
Tajvidi Safa, Bahareh [1 ]
Huang, Changjin [2 ]
Kabla, Alexandre [3 ]
Yang, Ruiguo [1 ,4 ,5 ]
机构
[1] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
[2] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[3] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[4] Michigan State Univ, Dept Biomed Engn, E Lansing, MI 48824 USA
[5] Michigan State Univ, Inst Quantitat Hlth Sci & Engn IQ, E Lansing, MI 48824 USA
关键词
active model; viscoelasticity; cell modeling; cell mechanics; tissue mechanics; FORCE GENERATION; SUBSTRATE STIFFNESS; MATRIX; MECHANOTRANSDUCTION; MIGRATION; RHEOLOGY; ADHESION; PROLIFERATION; MONOLAYERS; DIVISIONS;
D O I
10.1098/rsos.231074
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Living cells are out of equilibrium active materials. Cell-generated forces are transmitted across the cytoskeleton network and to the extracellular environment. These active force interactions shape cellular mechanical behaviour, trigger mechano-sensing, regulate cell adaptation to the microenvironment and can affect disease outcomes. In recent years, the mechanobiology community has witnessed the emergence of many experimental and theoretical approaches to study cells as mechanically active materials. In this review, we highlight recent advancements in incorporating active characteristics of cellular behaviour at different length scales into classic viscoelastic models by either adding an active tension-generating element or adjusting the resting length of an elastic element in the model. Summarizing the two groups of approaches, we will review the formulation and application of these models to understand cellular adaptation mechanisms in response to various types of mechanical stimuli, such as the effect of extracellular matrix properties and external loadings or deformations.
引用
收藏
页数:17
相关论文
共 129 条
[1]   Cell Flow Reorients the Axis of Planar Polarity in the Wing Epithelium of Drosophila [J].
Aigouy, Benoit ;
Farhadifar, Reza ;
Staple, Douglas B. ;
Sagner, Andreas ;
Roeper, Jens-Christian ;
Juelicher, Frank ;
Eaton, Suzanne .
CELL, 2010, 142 (05) :773-786
[2]  
Alert R, 2019, Arxiv, DOI arXiv:1905.07675
[3]   Physical Models of Collective Cell Migration [J].
Alert, Ricard ;
Trepat, Xavier .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 11, 2020, 2020, 11 :77-101
[4]   Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints [J].
Alisafaei, Farid ;
Jokhun, Doorgesh Sharma ;
Shivashankar, G. V. ;
Shenoy, Vivek B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (27) :13200-13209
[5]   Vertex models: from cell mechanics to tissue morphogenesis [J].
Alt, Silvanus ;
Ganguly, Poulami ;
Salbreux, Guillaume .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2017, 372 (1720)
[6]   The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening [J].
Andreu, Ion ;
Falcones, Bryan ;
Hurst, Sebastian ;
Chahare, Nimesh ;
Quiroga, Xarxa ;
Le Roux, Anabel-Lise ;
Kechagia, Zanetta ;
Beedle, Amy E. M. ;
Elosegui-Artola, Alberto ;
Trepat, Xavier ;
Farre, Ramon ;
Betz, Timo ;
Almendros, Isaac ;
Roca-Cusachs, Pere .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]  
Arbore Claudia, 2019, Biophys Rev, V11, P765, DOI [10.1007/s12551-019-00599-y, 10.1007/s12551-019-00599-y]
[8]  
Arslan Y Z., 2019, Biomechatronics, P305, DOI DOI 10.1016/B978-0-12-812939-5.00011-2
[9]   Porous-based rheological model for tissue fluidisation [J].
Asadipour, N. ;
Trepat, X. ;
Munoz, J. J. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 96 :535-549
[10]   Rheological properties of cells measured by optical tweezers [J].
Ayala, Yareni A. ;
Pontes, Bruno ;
Ether, Diney S. ;
Pires, Luis B. ;
Araujo, Glauber R. ;
Frases, Susana ;
Romao, Luciana F. ;
Farina, Marcos ;
Moura-Neto, Vivaldo ;
Viana, Nathan B. ;
Nussenzveig, H. Moyses .
BMC BIOPHYSICS, 2016, 9