Multispin probes for thermometry in the strong-coupling regime

被引:18
作者
Brenes M. [1 ]
Segal D. [1 ,2 ]
机构
[1] Department of Physics, Centre for Quantum Information and Quantum Control, University of Toronto, 60 Saint George St., Toronto, M5S 1A7, ON
[2] Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, M5S 3H6, ON
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Fisher information matrix - Quantum theory - Temperature;
D O I
10.1103/PhysRevA.108.032220
中图分类号
学科分类号
摘要
We study the sensitivity of thermometric probes that are composed of N spins coupled to a sample prepared at temperature T. Our analysis extends beyond the weak-coupling limit into the strong sample-probe coupling regime. In particular, sample-induced interactions between each of the spins are generated via strong coupling effects and are not fine-tuned among each body composing the probe. By employing the reaction-coordinate mapping to evaluate the noncanonical equilibrium state of the probe at finite coupling, we compute the thermometric sensitivity via the quantum Fisher information through the equilibrium state itself. We find that for single-spin probes (N=1), temperature sensitivity decreases in the regime of weak-to-intermediate coupling strength, however, as the coupling increases we observe much higher sensitivity of the probe in the low-temperature regime. Furthermore, as long as N>1, there exist optimal values of the sample-probe interaction energy that allow one to attain enhanced thermometric sensitivity when compared to the maximum achieved precision obtained from thermal Gibbs states at weak coupling, particularly in the regime of low temperature. Finally, we show that this enhanced sensitivity may be observed from suboptimal measurements. © 2023 American Physical Society.
引用
收藏
相关论文
共 78 条
[21]  
Latune C. L., Sinayskiy I., Petruccione F., New J. Phys, 22, (2020)
[22]  
Jorgensen M. R., Potts P. P., Paris M. G. A., Brask J. B., Phys. Rev. Res, 2, (2020)
[23]  
Montenegro V., Genoni M. G., Bayat A., Paris M. G. A., Phys. Rev. Res, 2, (2020)
[24]  
Hovhannisyan K. V., Jorgensen M. R., Landi G. T., Alhambra A. M., Brask J. B., Perarnau-Llobet M., PRX Quantum, 2, (2021)
[25]  
Khan M. M., Mehboudi M., Tercas H., Lewenstein M., Garcia-March M. A., Phys. Rev. Res, 4, (2022)
[26]  
Mihailescu G., Campbell S., Mitchell A. K., Phys. Rev. A, 107, (2023)
[27]  
Abiuso P., Erdman P. A., Ronen M., Noe F., Haack G., Perarnau-Llobet M.
[28]  
Sone A., Soares-Pinto D. O., Deffner S.
[29]  
Boeyens J., Seah S., Nimmrichter S., Phys. Rev. A, 104, (2021)
[30]  
Mehboudi M., Jorgensen M. R., Seah S., Brask J. B., Kolodynski J., Perarnau-Llobet M., Phys. Rev. Lett, 128, (2022)