Accelerating segmentation of fossil CT scans through Deep Learning

被引:3
作者
Knutsen, Espen M. [1 ,2 ]
Konovalov, Dmitry A. [1 ]
机构
[1] James Cook Univ, Coll Sci & Engn, Townsville, Qld 4811, Australia
[2] Queensland Museum Trop, Townsville, Qld 4810, Australia
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
D O I
10.1038/s41598-024-71245-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent developments in Deep Learning have opened the possibility for automated segmentation of large and highly detailed CT scan datasets of fossil material. However, previous methodologies have required large amounts of training data to reliably extract complex skeletal structures. Here we present a method for automated Deep Learning segmentation to obtain high-fidelity 3D models of fossils digitally extracted from the surrounding rock, training the model with less than 1%-2% of the total CT dataset. This workflow has the capacity to revolutionise the use of Deep Learning to significantly reduce the processing time of such data and boost the availability of segmented CT-scanned fossil material for future research outputs. Our final Unet segmentation model achieved a validation Dice similarity of 0.96.
引用
收藏
页数:8
相关论文
共 50 条
[41]   CT Segmentation of Dinosaur Fossils by Deep Learning [J].
Yu, Congyu ;
Qin, Fangbo ;
Li, Ying ;
Qin, Zichuan ;
Norell, Mark .
FRONTIERS IN EARTH SCIENCE, 2022, 9
[42]   Lesion segmentation in lung CT scans using unsupervised adversarial learning [J].
Moiz Khan Sherwani ;
Aldo Marzullo ;
Elena De Momi ;
Francesco Calimeri .
Medical & Biological Engineering & Computing, 2022, 60 :3203-3215
[43]   Lesion segmentation in lung CT scans using unsupervised adversarial learning [J].
Sherwani, Moiz Khan ;
Marzullo, Aldo ;
De Momi, Elena ;
Calimeri, Francesco .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (11) :3203-3215
[44]   A deep learning approach for liver cancer detection in CT scans [J].
Hameed, Usman ;
Rehman, Mujeeb Ur ;
Rehman, Amjad ;
Damasevicius, Robertas ;
Sattar, Abdul ;
Saba, Tanzila .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2024, 11 (07)
[45]   Automatic segmentation of geographic atrophy in OCT scans using deep learning [J].
Cheng, Yuxuan ;
Chu, Zhongdi ;
Shen, Mengxi ;
Laiginhas, Rita ;
Liu, Jeremy ;
Shi, Yingying ;
Li, Jianqing ;
Zhou, Hao ;
Zhang, Qinqin ;
Gregori, Giovanni ;
Rosenfeld, Philip J. ;
Wang, Ruikang K. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
[46]   A Study on Heart Segmentation Using Deep Learning Algorithm for MRI Scans [J].
Ibrahim, Shakeel Muhammad ;
Ibrahim, Muhammad Sohail ;
Usman, Muhammad ;
Naseem, Imran ;
Moinuddin, Muhammad .
MACS 2019 - 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics, Proceedings, 2019,
[47]   Intracranial Hemorrhage Detection in CT Scans using Deep Learning [J].
Lewick, Tomasz ;
Kumar, Meera ;
Hong, Raymond ;
Wu, Wencen .
2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2020), 2020, :170-173
[48]   A Study on Heart Segmentation Using Deep Learning Algorithm for MRI Scans [J].
Ibrahim, Shakeel Muhammad ;
Ibrahim, Muhammad Sohail ;
Usman, Muhammad ;
Naseem, Imran ;
Moinuddin, Muhammad .
2019 13TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS-13), 2019,
[49]   Deep Learning Unveils Hidden Angiography in Noncontrast CT Scans [J].
Zhang, Ran ;
Turkbey, Baris .
RADIOLOGY, 2023, 309 (02)
[50]   Deep Recurrent-Convolutional Model for Automated Segmentation of Craniomaxillofacial CT Scans [J].
Murabito, F. ;
Palazzo, S. ;
Salanitri, F. Proietto ;
Rundo, F. ;
Bagci, U. ;
Giordano, D. ;
Leonardi, R. ;
Spampinato, C. .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :9062-9067