Accelerating segmentation of fossil CT scans through Deep Learning

被引:3
作者
Knutsen, Espen M. [1 ,2 ]
Konovalov, Dmitry A. [1 ]
机构
[1] James Cook Univ, Coll Sci & Engn, Townsville, Qld 4811, Australia
[2] Queensland Museum Trop, Townsville, Qld 4810, Australia
关键词
D O I
10.1038/s41598-024-71245-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent developments in Deep Learning have opened the possibility for automated segmentation of large and highly detailed CT scan datasets of fossil material. However, previous methodologies have required large amounts of training data to reliably extract complex skeletal structures. Here we present a method for automated Deep Learning segmentation to obtain high-fidelity 3D models of fossils digitally extracted from the surrounding rock, training the model with less than 1%-2% of the total CT dataset. This workflow has the capacity to revolutionise the use of Deep Learning to significantly reduce the processing time of such data and boost the availability of segmented CT-scanned fossil material for future research outputs. Our final Unet segmentation model achieved a validation Dice similarity of 0.96.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Automatic Deep Learning Segmentation and Quantification of Epicardial Adipose Tissue in Non-Contrast Cardiac CT scans [J].
Hoori, Ammar ;
Hu, Tao ;
Al-Kindi, Sadeer ;
Rajagopalan, Sanjay ;
Wilson, David L. .
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, :3938-3942
[32]   Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet [J].
Jin, Liang ;
Yang, Jiancheng ;
Kuang, Kaiming ;
Ni, Bingbing ;
Gao, Yiyi ;
Sun, Yingli ;
Gao, Pan ;
Ma, Weiling ;
Tan, Mingyu ;
Kang, Hui ;
Chen, Jiajun ;
Li, Ming .
EBIOMEDICINE, 2020, 62
[33]   Fully automatic deep learning-based lung parenchyma segmentation and boundary correction in thoracic CT scans [J].
Rikhari, Himanshu ;
Kayal, Esha Baidya ;
Ganguly, Shuvadeep ;
Sasi, Archana ;
Sharma, Swetambri ;
Dheeksha, D. S. ;
Saini, Manish ;
Rangarajan, Krithika ;
Bakhshi, Sameer ;
Kandasamy, Devasenathipathy ;
Mehndiratta, Amit .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 19 (2) :261-272
[34]   Deep-learning-based method for the segmentation of ureter and renal pelvis on non-enhanced CT scans [J].
Jin, Xin ;
Zhong, Hai ;
Zhang, Yumeng ;
Pang, Guo Dong .
SCIENTIFIC REPORTS, 2024, 14 (01)
[35]   Ischemic Stroke Lesion Core Segmentation from CT Perfusion Scans Using Attention ResUnet Deep Learning [J].
Alirr, Omar Ibrahim .
JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,
[36]   Internet of Medical Things-Based on Deep Learning Techniques for Segmentation of Lung and Stroke Regions in CT Scans [J].
Han, Tao ;
Nunes, Virginia Xavier ;
De Freitas Souza, Luis Fabricio ;
Marques, Adriell Gomes ;
Lima Silva, Iagson Carlos ;
Araujo Ferreira Junior, Marcos Aurelio ;
Sun, Jinghua ;
Reboucas Filho, Pedro P. .
IEEE ACCESS, 2020, 8 :71117-71135
[37]   Deep learning-based auto-segmentation of lung tumor PET/CT scans: a systematic review [J].
Yung-Shuo Kao ;
Jen Yang .
Clinical and Translational Imaging, 2022, 10 :217-223
[38]   Deep learning-based auto-segmentation of lung tumor PET/CT scans: a systematic review [J].
Kao, Yung-Shuo ;
Yang, Jen .
CLINICAL AND TRANSLATIONAL IMAGING, 2022, 10 (02) :217-223
[39]   Fully automatic deep learning-based lung parenchyma segmentation and boundary correction in thoracic CT scans [J].
Himanshu Rikhari ;
Esha Baidya Kayal ;
Shuvadeep Ganguly ;
Archana Sasi ;
Swetambri Sharma ;
D. S. Dheeksha ;
Manish Saini ;
Krithika Rangarajan ;
Sameer Bakhshi ;
Devasenathipathy Kandasamy ;
Amit Mehndiratta .
International Journal of Computer Assisted Radiology and Surgery, 2024, 19 :261-272
[40]   Divisible Cell-Segmentation: A New Approach for Stroke Detection and Segmentation in CT Scans Using Deep Learning and Fine-tuning [J].
de Freitas Souza, Luis Fabricio ;
Michaliszen Junior, Joel R. ;
Marques, Adriell Gomes ;
Adelino Rodrigues, Yasmin Osorio ;
Brilhante Severiano, Guilherme Freire ;
da Costa Nascimento, Jose Jerovane ;
Reboucas Filho, Pedro P. .
2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,