Accelerating segmentation of fossil CT scans through Deep Learning

被引:3
作者
Knutsen, Espen M. [1 ,2 ]
Konovalov, Dmitry A. [1 ]
机构
[1] James Cook Univ, Coll Sci & Engn, Townsville, Qld 4811, Australia
[2] Queensland Museum Trop, Townsville, Qld 4810, Australia
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
D O I
10.1038/s41598-024-71245-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent developments in Deep Learning have opened the possibility for automated segmentation of large and highly detailed CT scan datasets of fossil material. However, previous methodologies have required large amounts of training data to reliably extract complex skeletal structures. Here we present a method for automated Deep Learning segmentation to obtain high-fidelity 3D models of fossils digitally extracted from the surrounding rock, training the model with less than 1%-2% of the total CT dataset. This workflow has the capacity to revolutionise the use of Deep Learning to significantly reduce the processing time of such data and boost the availability of segmented CT-scanned fossil material for future research outputs. Our final Unet segmentation model achieved a validation Dice similarity of 0.96.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Deep Distance Transform for Tubular Structure Segmentation in CT Scans [J].
Wang, Yan ;
Wei, Xu ;
Liu, Fengze ;
Chen, Jieneng ;
Zhou, Yuyin ;
Shen, Wei ;
Fishman, Elliot K. ;
Yuille, Alan L. .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :3832-3841
[22]   DEEP LOGISMOS: DEEP LEARNING GRAPH-BASED 3D SEGMENTATION OF PANCREATIC TUMORS ON CT SCANS [J].
Guo, Zhihui ;
Zhang, Ling ;
Lu, Le ;
Bagheri, Mohammadhadi ;
Summers, Ronald M. ;
Sonka, Milan ;
Yao, Jianhua .
2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, :1230-1233
[23]   Deep Learning for Brain Segmentation on CT Scans with Penetrating and Non-Penetrating Traumatic Brain Injury [J].
Toledo-Urena, J. ;
Fuhrman, J. D. ;
Mansour, A. ;
Pasternak-Wise, O. ;
Goldenberg, F. ;
Powla, P. ;
Giger, M. L. .
MEDICAL PHYSICS, 2024, 51 (10) :7750-7751
[24]   A Two stage deep learning network for automated femoral segmentation in bilateral lower limb CT scans [J].
Xie, Wenqing ;
Chen, Peng ;
Li, Zhigang ;
Wang, Xiaopeng ;
Wang, Chenggong ;
Zhang, Lin ;
Wu, Wenhao ;
Xiang, Junjie ;
Wang, Yiping ;
Zhong, Da .
SCIENTIFIC REPORTS, 2025, 15 (01)
[25]   Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans [J].
Ammar Hoori ;
Tao Hu ;
Juhwan Lee ;
Sadeer Al-Kindi ;
Sanjay Rajagopalan ;
David L. Wilson .
Scientific Reports, 12
[26]   Explainable Deep Learning Framework for Ground Glass Opacity (GGO) Segmentation from Chest CT Scans [J].
Atim, Paula ;
Fouad, Shereen ;
Yu, Sinling Tiffany ;
Fratini, Antonio ;
Rajasekaran, Arvind ;
Nagori, Pankaj ;
Morlese, John ;
Bhatia, Bahadar .
PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MEDICAL IMAGING AND COMPUTER-AIDED DIAGNOSIS, MICAD 2024, 2025, 1372 :187-197
[27]   Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans [J].
Hoori, Ammar ;
Hu, Tao ;
Lee, Juhwan ;
Al-Kindi, Sadeer ;
Rajagopalan, Sanjay ;
Wilson, David L. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[28]   A DEEP LEARNING APPROACH FOR IMPROVED SEGMENTATION OF LESIONS RELATED TO COVID-19 CHEST CT SCANS [J].
Vasilescu, Vlad ;
Neacsu, Ana ;
Chouzenoux, Emilie ;
Pesquet, Jean-Christophe ;
Burileanu, Corneliu .
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, :635-639
[29]   DEEP ACTIVE LEARNING FOR FIBROSIS SEGMENTATION OF CHEST CT SCANS FROM COVID-19 PATIENTS [J].
Liu, Xiaohong ;
Wang, Kai ;
Chen, Ting .
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, :175-179
[30]   Transfer Learning-Hierarchical Segmentation on COVID CT Scans [J].
Singh, Swati ;
Pais, Alwyn Roshan ;
Crasta, Lavina Jean .
NEW GENERATION COMPUTING, 2024, 42 (04) :551-577