共 23 条
- [1] MARCELLO A, SPINELLA S, RINAUDO S., Stochastic response surface method and tolerance analysis in microelectronics, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 22, 2, pp. 314-327, (2003)
- [2] WIENER N., The homogeneous chaos, American Journal of Mathematics, 60, 4, pp. 897-936, (1938)
- [3] GHANEM R G, SPANOS P D., Stochastic finite elements: A spectral approach, pp. 113-185, (1991)
- [4] XIU D, KARNIADAKIS G E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing, 24, 2, pp. 619-644, (2002)
- [5] XIU D, KARNIADAKIS G E., Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Computer Methods in Applied Mechanics and Engineering, 191, 43, pp. 4927-4948, (2002)
- [6] XIU D, KARNIADAKIS G E., Modeling uncertainty in flow simulations via generalized polynomial chaos, Journal of Computational Physics, 187, 1, pp. 137-167, (2003)
- [7] LOEVEN G J A, WITTEVEEN J A S, BIJL H., Probabilistic collocation: An efficient non-intrusive approach for arbitrarily distributed parametric uncertainties, Proceedings of 45th Aerospace Sciences Meeting and Exhibit, (2007)
- [8] LOEVEN G J A., Efficient uncertainty quantification in computational fluid dynamics, (2010)
- [9] MARGHERI L, SAGAUT P., A hybrid anchored-ANOVA-POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations, Journal of Computational Physics, 324, pp. 137-173, (2016)
- [10] MATHELIN L, HUSSAINI M Y., Uncertainty quantification in CFD simulations: A stochastic spectral approach, Computational Fluid Dynamics 2002, pp. 65-70, (2003)