Simulation and quantitative analysis of Raman spectra in chemical processes with autoencoders

被引:3
作者
Wu, Min [1 ]
Di Caprio, Ulderico [1 ]
Van der Ha, Olivier [2 ]
Metten, Bert [2 ]
De Clercq, Dries [2 ]
Elmaz, Furkan [3 ]
Mercelis, Siegfried [3 ]
Hellinckx, Peter [4 ]
Braeken, Leen [1 ]
Vermeire, Florence [5 ]
Leblebici, M. Enis [1 ]
机构
[1] Katholieke Univ Leuven, Ctr Ind Proc Technol, Agoralaan Bldg B, B-3590 Diepenbeek, Belgium
[2] Ajinomoto Biopharm Serv, Cooppallaan 91, B-9230 Wetteren, Belgium
[3] Univ Antwerp, Fac Appl Engn, IDLab, Imec, Sint Pietersvliet 7, B-2000 Antwerp, Belgium
[4] Univ Antwerp, Fac Appl Engn, Groenenborgerlaan 171, B-2000 Antwerp, Belgium
[5] Chem Reactor Engn & Safety, KU Leuven, Celestijnenlaan 200f Box 2424, B-3001 Leuven, Belgium
关键词
Raman spectra simulation; Autoencoder; Chemical process monitoring; Calibration model; Quantitative analysis; NEURAL-NETWORKS; SPECTROSCOPY;
D O I
10.1016/j.chemolab.2024.105119
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Raman spectroscopy represents an advanced process analytical technology to monitor and control chemical and biochemical processes. This study presents an autoencoder-based methodology that simulates Raman spectra from process variables and predicts the concentrations of different chemicals. The methodology accurately predicts concentrations from the spectra, even considering the temperature influences, and can work as an anomaly detector in process monitoring. The proposed methodology has significant implications for the optimization of industrial processes, improving process efficiency, reducing waste, and minimizing costs. It can also be extended to other industrial processes and imaging spectroscopy techniques, making it a valuable tool for process monitoring. This study highlights the effectiveness of autoencoders in simulating spectra and quantitative analysis, contributing significantly to the field of process monitoring. It has the potential to revolutionize industrial process monitoring and optimization, leading to substantial improvements in productivity and sustainability.
引用
收藏
页数:10
相关论文
共 59 条
[1]  
Abadi M., 2015, TensorFlow: Large-scale machine learning on heterogeneous systems
[2]   Raman spectroscopy for the qualitative and quantitative analysis of solid dosage forms of Sitagliptin [J].
Abu Bakkar, Muhammad ;
Nawaz, Haq ;
Majeed, Muhammad Irfan ;
Naseem, Ammara ;
Ditta, Allah ;
Rashid, Nosheen ;
Ali, Saqib ;
Bajwa, Jawad ;
Bashir, Saba ;
Ahmad, Shamsheer ;
Hyat, Hamza ;
Bukhari, Kareem Shah ;
Bonnier, Franck .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 245 (245)
[3]   Raman and near Infrared Spectroscopy for Quantification of Fatty Acids in Muscle Tissue-A Salmon Case Study [J].
Afseth, Nils Kristian ;
Dankel, Katinka ;
Andersen, Petter Vejle ;
Difford, Gareth Frank ;
Horn, Siri Storteig ;
Sonesson, Anna ;
Hillestad, Borghild ;
Wold, Jens Petter ;
Tengstrand, Erik .
FOODS, 2022, 11 (07)
[4]  
Agarap A.F., 2019, DEEP LEARNING USING
[5]  
[Anonymous], 2015, KerasTuner
[6]  
[Anonymous], 2024, Process monitoring-HyperFlux PRO Plus Raman spectrometer
[7]  
Apra E., 2019, arXiv
[8]  
Bank Dor., AUTOENCODERS CORR
[9]   Quantitative Analysis of Triazine-Based H2S Scavengers via Raman Spectroscopy [J].
Benhabib, Merwan ;
Kleinman, Samuel L. ;
Peterman, Mark C. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (44) :15936-15941
[10]   Calibration transfer of a Raman spectroscopic quantification method for the assessment of liquid detergent compositions from at-line laboratory to in-line industrial scale [J].
Brouckaert, D. ;
Uyttersprot, J-S. ;
Broeckx, W. ;
De Beer, T. .
TALANTA, 2018, 179 :386-392