Optimality and Duality for Robust Optimization Problems Involving Intersection of Closed Sets

被引:1
作者
Hung, Nguyen Canh [1 ,2 ,3 ]
Chuong, Thai Doan [4 ]
Anh, Nguyen Le Hoang [1 ,2 ]
机构
[1] Univ Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[3] Nha Trang Univ, Fac Informat Technol, Nha Trang, Khanh Hoa, Vietnam
[4] Brunel Univ London, Dept Math, London, England
关键词
Robust nonsmooth optimization; Optimality condition; Mordukhovich/limiting subdifferential; Duality; Constraint; Closed set; TANGENTIAL EXTREMAL PRINCIPLES; UNCERTAIN CONVEX-OPTIMIZATION; POLYNOMIAL PROGRAMS; INFINITE SYSTEMS; SDP RELAXATIONS; SEMIINFINITE; FINITE;
D O I
10.1007/s10957-024-02447-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study a robust optimization problem whose constraints include nonsmooth and nonconvex functions and the intersection of closed sets. Using advanced variational analysis tools, we first provide necessary conditions for the optimality of the robust optimization problem. We then establish sufficient conditions for the optimality of the considered problem under the assumption of generalized convexity. In addition, we present a dual problem to the primal robust optimization problem and examine duality relations.
引用
收藏
页码:771 / 794
页数:24
相关论文
共 32 条
[1]   Optimality conditions for convex problems on intersections of non necessarily convex sets [J].
Allevi, E. ;
Martinez-Legaz, J. E. ;
Riccardi, R. .
JOURNAL OF GLOBAL OPTIMIZATION, 2020, 77 (01) :143-155
[2]   Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraints [J].
Bao, Truong Q. ;
Mordukhovich, Boris S. .
APPLICATIONS OF MATHEMATICS, 2007, 52 (06) :453-472
[3]  
Ben-Tal A, 2009, PRINC SER APPL MATH, P3
[4]   Theory and Applications of Robust Optimization [J].
Bertsimas, Dimitris ;
Brown, David B. ;
Caramanis, Constantine .
SIAM REVIEW, 2011, 53 (03) :464-501
[5]  
BONNANS J, 2000, PERTURBATION ANAL OP, DOI DOI 10.1007/978-1-4612-1394-9
[6]   Constraint qualifications for convex optimization without convexity of constraints : New connections and applications to best approximation [J].
Chieu, N. H. ;
Jeyakumar, V. ;
Li, G. ;
Mohebi, H. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 265 (01) :19-25
[7]  
Chuong TD, 2018, J CONVEX ANAL, V25, P1159
[8]   Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications [J].
Chuong, T. D. ;
Jeyakumar, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 :381-399
[9]  
Clarke FH., 1998, NONSMOOTH ANAL CONTR, P198
[10]   Optimality conditions for nonconvex problems over nearly convex feasible sets [J].
Ghafari, N. ;
Mohebi, H. .
ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (02) :395-408