Molecular Mechanism of Exogenous Magnesium in Regulating Cation Homeostasis in Roots of Peanut Seedlings under Salt Stress

被引:0
|
作者
Wang, Rongjin [1 ]
Dong, Xuan [1 ]
Gao, Yan [1 ]
Hao, Fei [1 ]
Zhang, Hui [1 ]
Lin, Guolin [1 ]
机构
[1] Shenyang Agr Univ, Coll Land & Environm, 120 Dongling Rd, Shenyang 110866, Peoples R China
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 04期
关键词
magnesium; salt stress; ion transport; peanut; cation exchange; abiotic stress; PHYSIOLOGICAL-RESPONSE; TOLERANCE; EXPRESSION; POTASSIUM; CALCIUM; GROWTH; YIELD;
D O I
10.3390/agronomy14040724
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Salt stress seriously hinders the normal growth of plant seedling roots. Magnesium, as one of the essential medium elements for plant growth, can effectively alleviate the damage of salt stress to plant roots, but the key genes involved and their mechanism are still unclear. The purpose of this study was to explore the related molecular mechanism of exogenous magnesium regulating cation homeostasis in peanut seedlings under salt stress. Firstly, according to plant physiology experiments, it was found that exogenous magnesium treatment significantly improved the tolerance of peanut seedlings to salt stress. After that, the transcriptome data were integrated, and further gene expression analysis showed that the expression of genes such as CNGC1, NCLs, and NHX7 was regulated under exogenous magnesium treatment, which effectively reduced the accumulation of sodium ions in cells. At the same time, exogenous magnesium also regulates the expression of genes such as ACAs and POTs and maintains the homeostasis of calcium and potassium ions in cells. These results reveal the molecular mechanism of exogenous magnesium regulating the cation homeostasis of peanut seedlings under salt stress, which provides an important reference for further revealing the key genes of salt tolerance in plants.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Exogenous Melatonin Improves the Growth of Rice Seedlings by Regulating Redox Balance and Ion Homeostasis Under Salt Stress
    Long Wei
    Haiyan Zhao
    Baoxiang Wang
    Xinyi Wu
    Rujia Lan
    Xu Huang
    Bo Chen
    Gang Chen
    Chaoqiang Jiang
    Jinlan Wang
    Yan Liu
    Qingsong Zheng
    Journal of Plant Growth Regulation, 2022, 41 : 2108 - 2121
  • [2] Exogenous Melatonin Improves the Growth of Rice Seedlings by Regulating Redox Balance and Ion Homeostasis Under Salt Stress
    Wei, Long
    Zhao, Haiyan
    Wang, Baoxiang
    Wu, Xinyi
    Lan, Rujia
    Huang, Xu
    Chen, Bo
    Chen, Gang
    Jiang, Chaoqiang
    Wang, Jinlan
    Liu, Yan
    Zheng, Qingsong
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (06) : 2108 - 2121
  • [3] The Physiological Mechanism of Exogenous Melatonin Regulating Salt Tolerance in Eggplant Seedlings
    Zhang, Yu
    Jia, Li
    Wang, Han
    Jiang, Haikun
    Ding, Qiangqiang
    Yang, Dekun
    Yan, Congsheng
    Lu, Xiaomin
    AGRONOMY-BASEL, 2025, 15 (02):
  • [4] Research on Changes of Nutrients in Peanut Seedlings under Salt Stress
    Feng, Suping
    Wang, Yifei
    Bai, Dongmei
    Wu, Yaoting
    2016 2ND INTERNATIONAL CONFERENCE ON ENVIRONMENTAL POLLUTION AND PUBLIC HEALTH (EPPH 2016), 2016, 8 : 26 - 32
  • [5] Exogenous Calcium Alleviates Oxidative Stress Caused by Salt Stress in Peanut Seedling Roots by Regulating the Antioxidant Enzyme System and Flavonoid Biosynthesis
    Gao, Yan
    Dong, Xuan
    Wang, Rongjin
    Hao, Fei
    Zhang, Hui
    Zhang, Yongyong
    Lin, Guolin
    ANTIOXIDANTS, 2024, 13 (02)
  • [6] Effects of exogenous calcium on flavonoid biosynthesis and accumulation in peanut roots under salt stress through multi-omics
    Gao, Yan
    Dong, Xuan
    Wang, Rongjin
    Zhang, Yongyong
    Hao, Fei
    Niu, Xuguang
    Zhang, Hui
    Lin, Guolin
    FRONTIERS IN NUTRITION, 2024, 11
  • [7] Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress
    Ma, Lianju
    Li, Yueying
    Yu, Cuimei
    Wang, Yan
    Li, Xuemei
    Li, Na
    Chen, Qiang
    Bu, Ning
    PROTOPLASMA, 2012, 249 (02) : 393 - 399
  • [8] Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress
    Lianju Ma
    Yueying Li
    Cuimei Yu
    Yan Wang
    Xuemei Li
    Na Li
    Qiang Chen
    Ning Bu
    Protoplasma, 2012, 249 : 393 - 399
  • [9] Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings
    De-wei Mu
    Nai-jie Feng
    Dian-feng Zheng
    Hang Zhou
    Ling Liu
    Guan-jie Chen
    BaoMing Mu
    Scientific Reports, 12
  • [10] Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings
    Mu, De-wei
    Feng, Nai-jie
    Zheng, Dian-feng
    Zhou, Hang
    Liu, Ling
    Chen, Guan-jie
    Mu, BaoMing
    SCIENTIFIC REPORTS, 2022, 12 (01)