Componentwise influence of upstream turbulence on the far-wake dynamics of wind turbines

被引:15
作者
Feng, Dachuan [1 ,2 ,3 ]
Li, Larry K. B. [1 ,4 ]
Gupta, Vikrant [2 ,3 ,5 ]
Wan, Minping [2 ,3 ,5 ,6 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Guangdong Prov Key Lab Turbulence Res & Applicat, Shenzhen 518055, Peoples R China
[3] Southern Marine Sci & Engn Guangdong Lab, Guangzhou 511458, Peoples R China
[4] Hong Kong Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven F, Clear Water Bay, Hong Kong, Peoples R China
[5] Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven F, Shenzhen 518055, Peoples R China
[6] Southern Univ Sci & Technol, Jiaxing Res Inst, Jiaxing 314031, Peoples R China
基金
中国国家自然科学基金;
关键词
Wind energy; Wake modeling; Turbulence; ANALYTICAL-MODEL; SIMILARITY; TUNNEL; FLOW; STABILITY;
D O I
10.1016/j.renene.2022.10.024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wake meandering and turbulent kinetic energy (TKE) generation in the far-wake region of wind turbines significantly affect the power production and aerodynamic loads of wind farms. This work thus aims at understanding the componentwise influence of upstream turbulence and roles of different mechanisms on the far-wake dynamics to guide the development of wind-farm wake models. We find that the wake meandering is mainly caused by the upstream spanwise (v ') and vertical (w ') velocity fluctuations, supporting the passive wake meandering mechanism. However, our results also show a scale-dependence of the wake meandering that should be accounted in wake models. We find that v ' and w ' cause greater TKE generation than the streamwise velocity fluctuations (u '). We then use simulation- and resolvent-based componentwise input-output analyses to explain that this is because the shear instability in turbine wakes is more receptive to the transverse forcing relative to the streamwise forcing. This highlights the importance of implementing the shear instability mechanism in wake models for accurate TKE estimations. Finally, we find that u ' cause the thrust fluctuations, which can lead to near-wake corrections and hence influence the far-wake evolution.
引用
收藏
页码:1081 / 1091
页数:11
相关论文
共 87 条
[1]   Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
PHYSICS OF FLUIDS, 2015, 27 (03)
[2]   An Analytical Model for the Effect of Vertical Wind Veer on Wind Turbine Wakes [J].
Abkar, Mandi ;
Sorensen, Jens Norkaer ;
Porte-Agel, Fernando .
ENERGIES, 2018, 11 (07)
[4]   Evaluations of the von Karman constant in the atmospheric surface layer [J].
Andreas, Edgar L. ;
Claffey, Kerry J. ;
Jordan, Rachel E. ;
Fairall, Christopher W. ;
Guest, Peter S. ;
Persson, P. Ola G. ;
Grachev, Andrey A. .
JOURNAL OF FLUID MECHANICS, 2006, 559 (117-149) :117-149
[5]  
[Anonymous], 2019, Orsted cuts offshore wind output estimate
[6]  
[Anonymous], 2005, IEC 61400-1
[7]   3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar [J].
Banta, Robert M. ;
Pichugina, Yelena L. ;
Brewer, W. Alan ;
Lundquist, Julie K. ;
Kelley, Neil D. ;
Sandberg, Scott P. ;
Alvarez, Raul J., II ;
Hardesty, R. Michael ;
Weickmann, Ann M. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2015, 32 (05) :904-914
[8]   Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel [J].
Barlas, E. ;
Buckingham, S. ;
van Beeck, J. .
BOUNDARY-LAYER METEOROLOGY, 2016, 158 (01) :27-42
[9]   Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore [J].
Barthelmie, R. J. ;
Hansen, K. ;
Frandsen, S. T. ;
Rathmann, O. ;
Schepers, J. G. ;
Schlez, W. ;
Phillips, J. ;
Rados, K. ;
Zervos, A. ;
Politis, E. S. ;
Chaviaropoulos, P. K. .
WIND ENERGY, 2009, 12 (05) :431-444
[10]   Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region [J].
Bastankhah, M. ;
Porte-Agel, F. .
PHYSICS OF FLUIDS, 2017, 29 (06)