Machine Learning Approach to NOx Prediction for SCR Process of Thermal Power Plant

被引:1
作者
Matsuzaki, A. [1 ]
Kiribuchi, D. [2 ]
Shimizu, K. [1 ]
机构
[1] Toshiba Energy Syst & Solut Corp, Yokohama, Kanagawa 2300045, Japan
[2] Toshiba Co Ltd, Kawasaki, Kanagawa 2128582, Japan
关键词
Power plants and power systems; process control applications; artificial intelligence; regression; machine learning; CONTROL STRATEGY; MODEL;
D O I
10.1016/j.ifacol.2023.10.1401
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a machine learning application, to predict the formed nitrogen-oxides (NOx) in thermal power plants, and used in the control loops of the selective catalytic reduction (SCR) process. To deal with the big plant operation data, data reduction methods are also described. The predictions are applied for the feed-forward (FF) control and show improvement of control performance in the simulation study. Copyright (c) 2023 The Authors.
引用
收藏
页码:2858 / 2864
页数:7
相关论文
共 11 条
[1]   Extremely randomized trees [J].
Geurts, P ;
Ernst, D ;
Wehenkel, L .
MACHINE LEARNING, 2006, 63 (01) :3-42
[2]   Anticipatory NH3 injection control for SCR system based on the prediction of the inlet NOx concentration [J].
Liu, Guofu ;
Zhang, Yu ;
Shen, Dekui ;
Yuan, Bing ;
Li, Rui ;
Sun, Yu .
JOURNAL OF THE ENERGY INSTITUTE, 2021, 94 :167-175
[3]  
Nakamoto M., 2002, T SOC INSTRUMENT CON, V2, P98
[4]   A nonlinear exponential ARX model-based multivariable generalized predictive control strategy for thermal power plants [J].
Peng, H ;
Ozaki, T ;
Haggan-Ozaki, V ;
Toyoda, Y .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2002, 10 (02) :256-262
[5]   A predictive control strategy for nonlinear NOx decomposition process in thermal power plants [J].
Peng, Hui ;
Gui, Weihua ;
Shioya, Hideo ;
Zou, Runmin .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2006, 36 (05) :904-921
[6]  
Shimizu K., 1996, Transactions of the Society of Instrument and Control Engineers, V32, P912
[7]  
Sperlea T, 2018, BMC BIOINFORMATICS, V19, DOI [10.1186/s12859-018-2419-4, 10.3322/caac.21834]
[8]   NOX Emission Model for Coal-Fired Boilers Using Principle Component Analysis and Support Vector Regression [J].
Tan, Peng ;
Zhang, Cheng ;
Xia, Ji ;
Fang, Qingyan ;
Chen, Gang .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2016, 49 (02) :211-216
[9]  
Tang ZH, 2019, CHIN AUTOM CONGR, P1588, DOI [10.1109/cac48633.2019.8996887, 10.1109/CAC48633.2019.8996887]
[10]   Sustainable NOx emission reduction at a coal-fired power station through the use of online neural network modeling and particle swarm optimization [J].
Tuttle, Jacob F. ;
Vesel, Ricky ;
Alagarsamy, Siva ;
Blackburn, Landen D. ;
Powell, Kody .
CONTROL ENGINEERING PRACTICE, 2019, 93